PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS

被引:19
|
作者
Wei, Huayi [1 ,2 ]
Huang, Xuehai [3 ]
Li, Ao [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Stokes problem; divergence-free nonconforming virtual elements; local energy projector; pressure-robust virtual element method; reduced virtual element method; CONTINUITY; GALERKIN;
D O I
10.1137/20M1350479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise divergence-free nonconforming virtual elements are designed for Stokes problem in any dimensions. After introducing a local energy projector based on the Stokes problem and the stabilization, a divergence-free nonconforming virtual element method is proposed for Stokes problem. A detailed and rigorous error analysis is presented for the discrete method. An important property in the analysis is that the local energy projector commutes with the divergence operator. With the help of a divergence-free interpolation operator onto a generalized Raviart-Thomas element space, a pressure-robust nonconforming virtual element method is developed by simply modifying the right-hand side of the previous discretization. A reduced virtual element method is also discussed. Numerical results are provided to verify the theoretical convergence.
引用
收藏
页码:1835 / 1856
页数:22
相关论文
共 50 条
  • [21] Divergence-Free HDG Methods for the Vorticity-Velocity Formulation of the Stokes Problem
    Cockburn, Bernardo
    Cui, Jintao
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (01) : 256 - 270
  • [22] NONCONFORMING FINITE-ELEMENTS FOR THE STOKES PROBLEM
    CROUZEIX, M
    FALK, RS
    MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 437 - 456
  • [23] Hybridized globally divergence-free LDG methods.: part I:: The Stokes problem
    Carrero, J
    Cockburn, B
    Schötzau, D
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 533 - 563
  • [24] A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes
    Wang, Gang
    Wang, Feng
    He, Yinnian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (06)
  • [25] A divergence-free weak virtual element method for the Navier-Stokes equation on polygonal meshes
    Gang Wang
    Feng Wang
    Yinnian He
    Advances in Computational Mathematics, 2021, 47
  • [26] A Divergence-Free Petrov-Galerkin Immersed Finite Element Method for Stokes Interface Problem
    Zhu, Na
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)
  • [27] Stable nonconforming quadrilateral finite elements for the Stokes problem
    Kim, Y
    Lee, S
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 115 (2-3) : 101 - 112
  • [28] Analysis of divergence free conforming virtual elements for the Brinkman problem
    Huang, Xuehai
    Wang, Feng
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (06): : 1245 - 1280
  • [29] A note on a lowest order divergence-free Stokes element on quadrilaterals
    Zhou, Xinchen
    Meng, Zhaoliang
    Fan, Xin
    Luo, Zhongxuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 4008 - 4016
  • [30] Divergence-free cut finite element methods for Stokes flow
    Frachon, Thomas
    Nilsson, Erik
    Zahedi, Sara
    BIT NUMERICAL MATHEMATICS, 2024, 64 (04)