PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS

被引:19
|
作者
Wei, Huayi [1 ,2 ]
Huang, Xuehai [3 ]
Li, Ao [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Stokes problem; divergence-free nonconforming virtual elements; local energy projector; pressure-robust virtual element method; reduced virtual element method; CONTINUITY; GALERKIN;
D O I
10.1137/20M1350479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise divergence-free nonconforming virtual elements are designed for Stokes problem in any dimensions. After introducing a local energy projector based on the Stokes problem and the stabilization, a divergence-free nonconforming virtual element method is proposed for Stokes problem. A detailed and rigorous error analysis is presented for the discrete method. An important property in the analysis is that the local energy projector commutes with the divergence operator. With the help of a divergence-free interpolation operator onto a generalized Raviart-Thomas element space, a pressure-robust nonconforming virtual element method is developed by simply modifying the right-hand side of the previous discretization. A reduced virtual element method is also discussed. Numerical results are provided to verify the theoretical convergence.
引用
收藏
页码:1835 / 1856
页数:22
相关论文
共 50 条
  • [1] THE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENT FOR THE STOKES PROBLEM
    Zhao, Jikun
    Zhang, Bei
    Mao, Shipeng
    Chen, Shaochun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2730 - 2759
  • [2] A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem ?
    Liu, Xin
    Li, Rui
    Nie, Yufeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [3] The divergence-free nonconforming virtual element method for the Navier-Stokes problem
    Zhang, Bei
    Zhao, Jikun
    Li, Meng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1977 - 1995
  • [4] A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem
    Kwak, Do Y.
    Park, Hyeokjoo
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 449 - 471
  • [5] A formal construction of a divergence-free basis in the nonconforming virtual element method for the Stokes problem
    Do Y. Kwak
    Hyeokjoo Park
    Numerical Algorithms, 2022, 91 : 449 - 471
  • [6] Conforming and divergence-free Stokes elements in three dimensions
    Guzman, Johnny
    Neilan, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1489 - 1508
  • [7] A cutFEM divergence-free discretization for the stokes problem
    Liu, Haoran
    Neilan, Michael
    Olshanskii, Maxim
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (01) : 143 - 165
  • [8] Piecewise divergence-free discontinuous Galerkin methods for Stokes flow
    Hansbo, Peter
    Larson, Mats G.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2008, 24 (05): : 355 - 366
  • [9] DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Vacca, Giuseppe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 509 - 535
  • [10] DIVERGENCE-FREE KERNEL METHODS FOR APPROXIMATING THE STOKES PROBLEM
    Wendland, Holger
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 3158 - 3179