PIECEWISE DIVERGENCE-FREE NONCONFORMING VIRTUAL ELEMENTS FOR STOKES PROBLEM IN ANY DIMENSIONS

被引:19
作者
Wei, Huayi [1 ,2 ]
Huang, Xuehai [3 ]
Li, Ao [1 ,2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Stokes problem; divergence-free nonconforming virtual elements; local energy projector; pressure-robust virtual element method; reduced virtual element method; CONTINUITY; GALERKIN;
D O I
10.1137/20M1350479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise divergence-free nonconforming virtual elements are designed for Stokes problem in any dimensions. After introducing a local energy projector based on the Stokes problem and the stabilization, a divergence-free nonconforming virtual element method is proposed for Stokes problem. A detailed and rigorous error analysis is presented for the discrete method. An important property in the analysis is that the local energy projector commutes with the divergence operator. With the help of a divergence-free interpolation operator onto a generalized Raviart-Thomas element space, a pressure-robust nonconforming virtual element method is developed by simply modifying the right-hand side of the previous discretization. A reduced virtual element method is also discussed. Numerical results are provided to verify the theoretical convergence.
引用
收藏
页码:1835 / 1856
页数:22
相关论文
共 31 条
  • [1] A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES
    Antonietti, P. F.
    da Veiga, L. Beirao
    Mora, D.
    Verani, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 386 - 404
  • [2] Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
  • [3] Arnold Douglas N, 2018, Finite element exterior calculus
  • [4] CONTINUITY PROPERTIES OF THE INF-SUP CONSTANT FOR THE DIVERGENCE
    Bernardi, Christine
    Costabel, Martin
    Dauge, Monique
    Girault, Vivette
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 1250 - 1271
  • [5] BOFFI D., 2013, SPRINGER SER COMPUT, V44, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
  • [6] Brenner S., 2008, Texts in Applied Mathematics, Vthird, DOI DOI 10.1007/978-0-387-75934-0
  • [7] Brenner SC, 2004, MATH COMPUT, V73, P1067
  • [8] Virtual element methods on meshes with small edges or faces
    Brenner, Susanne C.
    Sung, Li-Yeng
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (07) : 1291 - 1336
  • [9] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR THE STOKES EQUATIONS
    Cangiani, Andrea
    Gyrya, Vitaliy
    Manzini, Gianmarco
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3411 - 3435
  • [10] On conservation laws of Navier-Stokes Galerkin discretizations
    Charnyi, Sergey
    Heister, Timo
    Olshanskii, Maxim A.
    Rebholz, Leo G.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 337 : 289 - 308