The alternating-direction iterative method for saddle point problems

被引:9
|
作者
Peng, Xiao-Fei [2 ,3 ]
Li, Wen [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Cent S Univ, Sch Math, Changsha 410083, Peoples R China
[3] S China Normal Univ, Nanhai Coll, Foshan 528225, Peoples R China
基金
中国国家自然科学基金;
关键词
Saddle point problem; Matrix splitting; The alternating-direction iterative method; The optimal parameter; Convergence; HERMITIAN SPLITTING METHODS; DEFINITE LINEAR-SYSTEMS; NUMERICAL-SOLUTION; INEXACT;
D O I
10.1016/j.amc.2009.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, a new alternating-direction iterative method is proposed based on matrix splittings for solving saddle point problems. The convergence analysis for the new method is given. When the better values of parameters are employed, the proposed method has faster convergence rate and less time cost than the Uzawa algorithm with the optimal parameter and the Hermitian and skew-Hermitian splitting iterative method. Numerical examples further show the effectiveness of the method. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1845 / 1858
页数:14
相关论文
共 50 条
  • [1] Alternating Direction Method of Multipliers for Decomposable Saddle-Point Problems
    Karabag, Mustafa O.
    Fridovich-Keil, David
    Topcu, Ufuk
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [2] On an iterative method for saddle point problems
    Tong, ZY
    Sameh, A
    NUMERISCHE MATHEMATIK, 1998, 79 (04) : 643 - 646
  • [3] On an iterative method for saddle point problems
    Zhanye Tong
    Ahmed Sameh
    Numerische Mathematik, 1998, 79 : 643 - 646
  • [4] An Alternating-Direction Sinc-Galerkin method for elliptic problems
    Alonso, Nicomedes, III
    Bowers, Kenneth L.
    JOURNAL OF COMPLEXITY, 2009, 25 (03) : 237 - 252
  • [5] An iterative perturbation method for saddle point problems
    Yang, DQ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1999, 19 (02) : 215 - 231
  • [6] MIXED FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS AND ITS ALTERNATING-DIRECTION ITERATIVE SCHEME
    张怀宇
    梁栋
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 1999, (02) : 133 - 150
  • [7] The MGAOR-Iterative Method for Saddle Point Problems
    Li, Jicheng
    Gao, Yong
    Mei, Ziya
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 92 - 95
  • [8] Convergence of Splitting Iterative Method for Saddle Point Problems
    Ren, Jun-Fei
    Gao, Yue-Qin
    Wen, Rui-Ping
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 70 - 73
  • [9] Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems
    Lai, Xiang
    Yuan, Yirang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (03) : 384 - 403
  • [10] An improved alternating-direction method for a viscous wave equation
    Douglas, J
    Kim, S
    Lim, H
    CURRENT TRENDS IN SCIENTIFIC COMPUTING, 2003, 329 : 99 - 104