Ultrafast Charge Transfer at a Quantum Dot/2D Materials Interface Probed by Second Harmonic Generation

被引:32
|
作者
Goodman, Aaron J. [1 ]
Dahod, Nabeel S. [2 ]
Tisdale, William A. [2 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02142 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2018年 / 9卷 / 15期
关键词
NONRADIATIVE ENERGY-TRANSFER; SINGLE-LAYER; ACOUSTIC VIBRATIONS; CDSE NANOCRYSTALS; TRANSPORT; DOTS; DEPENDENCE; DYNAMICS; GRAPHENE; MOS2;
D O I
10.1021/acs.jpclett.8b01606
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hybrid quantum dot (QD)/transition metal dichalcogenide (TMD) heterostructures are attractive components of next generation optoelectronic devices, which take advantage of the spectral tunability of QDs and the charge and exciton transport properties of TMDs. Here, we demonstrate tunable electronic coupling between CdSe QDs and monolayer WS2 using variable length alkanethiol ligands on the QD surface. Using femtosecond time-resolved second harmonic generation (SHG) microscopy, we show that electron transfer from photoexcited CdSe QDs to single-layer WS2 occurs on ultrafast (50 fs to 1 ps) time scales. Moreover, in the samples exhibiting the fastest charge transfer rates (<= 50 fs) we observed oscillations in the time-domain signal corresponding to an acoustic phonon mode of the donor QD, which coherently modulates the SHG response of the underlying WS2 layer. These results reveal surprisingly strong electronic coupling at the QD/TMD interface and demonstrate the usefulness of time-resolved SHG for exploring ultrafast electronic-vibrational dynamics in TMD heterostructures.
引用
收藏
页码:4227 / 4232
页数:11
相关论文
共 50 条
  • [21] Ultrafast Charge Separation at the CdSe Quantum Dot/Methylviologen Interface: Dependence on Electron Acceptor Concentration
    Dworak, Lars
    Wachtveitl, Josef
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2011, 225 (05): : 575 - 585
  • [22] Phonon-Assisted Auger Process Enables Ultrafast Charge Transfer in CdSe Quantum Dot/Organic Molecule
    Wang, Zhi
    Rafipoor, Mona
    Risueno, Pablo Garcia
    Merkl, Jan-Philip
    Han, Peng
    Lange, Holger
    Bester, Gabriel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (28) : 17127 - 17135
  • [23] Study of Charge Transfer at the Quantum Dot-Graphene Interface by Raman Spectroscopy
    Zhang, Butian
    Wang, Kexin
    Chang, Ruiheng
    Yi, Xin
    Zhang, Youwei
    Wang, Shun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (40) : 24943 - 24948
  • [24] Interface Engineering in Hybrid Quantum Dot-2D Phototransistors
    Kufer, Dominik
    Lasanta, Tania
    Bernechea, Maria
    Koppens, Frank H. L.
    Konstantatos, Gerasimos
    ACS PHOTONICS, 2016, 3 (07): : 1324 - 1330
  • [25] Computing strain-dependent energy transfer from quantum dots to 2D materials
    Simsek, Esra
    Aslan, Burak
    NANO FUTURES, 2023, 7 (02)
  • [26] 2D materials towards ultrafast photonic applications
    Zhai, Xin-Ping
    Ma, Bo
    Wang, Qiang
    Zhang, Hao-Li
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (39) : 22140 - 22156
  • [27] Bandgap Generation in 2D Materials
    Kumar, Gaurav
    Singh, Mandeep
    Trivedi, Gaurav
    Nandi, Debashish
    PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON 2017 DEVICES FOR INTEGRATED CIRCUIT (DEVIC), 2017, : 551 - 555
  • [28] Hydrated Phospholipid Surfaces Probed by Ultrafast 2D Spectroscopy of Phosphate Vibrations
    Costard, Rene
    Heisler, Ismael A.
    Elsaesser, Thomas
    ULTRAFAST PHENOMENA XIX, 2015, 162 : 301 - 304
  • [29] Beyond the Charge Transfer Mechanism for 2D Materials-Assisted Surface Enhanced Raman Scattering
    Wang, Shuo
    Wei, Youchao
    Zheng, Siyang
    Zhang, Zhaofu
    Tang, Xi
    Liang, Liangbo
    Zang, Zhigang
    Qian, Qingkai
    ANALYTICAL CHEMISTRY, 2024, 96 (24) : 9917 - 9926
  • [30] Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices
    Ondry, Justin C.
    Philbin, John P.
    Lostica, Michael
    Rabani, Eran
    Alivisatos, A. Paul
    ACS NANO, 2021, 15 (02) : 2251 - 2262