Non-parametric expectation-maximization for Gaussian mixtures

被引:0
|
作者
Sakuma, J [1 ]
Kobayashi, S [1 ]
机构
[1] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan
来源
ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Non-parametric EM algorithm, where nonparametric kernel density estimation is used instead of conventional parametric density estimation. Our proposal kernel function, Constructive Elliptical Basis Function (CEBF), is an extension of the EBF and can effectively represent ill-scaled and non-separable distributions without a covariance matrix even in high dimensionality in a nonparametric manner. The overlapping CEBFs with a fixed smoothing parameter can be used as an approximation of Gaussian distribution in a statistical sense. Using CEBFs as kernel functions, we propose Non-parametric Expectation-Maximization (NPEM) for the Gaussian Mixture Model (GMM). Then we show that NPEM obtains better estimation in terms of log likelihood than traditional EM algorithms when the given data set has high dimensionality or holds multiple components by numerical experiments.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [41] An expectation-maximization approach to nonlinear component analysis
    Rosipal, R
    Girolami, M
    NEURAL COMPUTATION, 2001, 13 (03) : 505 - 510
  • [42] Expectation-maximization for Bayes-adaptive POMDPs
    Vargo, Erik P.
    Cogill, Randy
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (10) : 1605 - 1623
  • [43] Expectation-Maximization for Learning Determinantal Point Processes
    Gillenwater, Jennifer
    Kulesza, Alex
    Fox, Emily
    Taskar, Ben
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [44] ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS
    Barazandeh, Babak
    Razaviyayn, Meisam
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 61 - 65
  • [45] Expectation-Maximization Binary Clustering for Behavioural Annotation
    Garriga, Joan
    Palmer, John R. B.
    Oltra, Aitana
    Bartumeus, Frederic
    PLOS ONE, 2016, 11 (03):
  • [46] An expectation-maximization scheme for measurement error models
    Bhadra, Anindya
    STATISTICS & PROBABILITY LETTERS, 2017, 120 : 61 - 68
  • [47] Image restoration with a generalized expectation-maximization algorithm
    Kudo, Hiroyuki
    Saito, Tsuneo
    Systems and Computers in Japan, 1993, 24 (12): : 43 - 53
  • [48] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [49] Analyzing articulated motion using expectation-maximization
    Rowley, HA
    Rehg, JM
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 935 - 941
  • [50] Accelerating Expectation-Maximization Algorithms with Frequent Updates
    Yin, Jiangtao
    Zhang, Yanfeng
    Gao, Lixin
    2012 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2012, : 275 - 283