Non-parametric expectation-maximization for Gaussian mixtures

被引:0
|
作者
Sakuma, J [1 ]
Kobayashi, S [1 ]
机构
[1] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan
来源
ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Non-parametric EM algorithm, where nonparametric kernel density estimation is used instead of conventional parametric density estimation. Our proposal kernel function, Constructive Elliptical Basis Function (CEBF), is an extension of the EBF and can effectively represent ill-scaled and non-separable distributions without a covariance matrix even in high dimensionality in a nonparametric manner. The overlapping CEBFs with a fixed smoothing parameter can be used as an approximation of Gaussian distribution in a statistical sense. Using CEBFs as kernel functions, we propose Non-parametric Expectation-Maximization (NPEM) for the Gaussian Mixture Model (GMM). Then we show that NPEM obtains better estimation in terms of log likelihood than traditional EM algorithms when the given data set has high dimensionality or holds multiple components by numerical experiments.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [31] Expectation-maximization for a linear combination of Gaussians
    Gimel'farb, G
    Farag, AA
    El-Baz, A
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 422 - 425
  • [32] Expectation-Maximization Algorithm with Local Adaptivity
    Leung, Shingyu
    Liang, Gang
    Solna, Knut
    Zhao, Hongkai
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (03): : 834 - 857
  • [33] Accelerated distributed expectation-maximization algorithms for the parameter estimation in multivariate Gaussian mixture models
    Guo, Guangbao
    Wang, Qian
    Allison, James
    Qian, Guoqi
    APPLIED MATHEMATICAL MODELLING, 2025, 137
  • [34] Automatic Line Segment Registration Using Gaussian Mixture Model and Expectation-Maximization Algorithm
    Long, Tengfei
    Jiao, Weili
    He, Guojin
    Wang, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (05) : 1688 - 1699
  • [35] Non Parametric Stochastic Expectation Maximization for Data Clustering
    Bougeniere, Gilles
    Cariou, Claude
    Chehdi, Kacem
    Gay, Alan
    E-BUSINESS AND TELECOMMUNICATIONS, 2008, 23 : 293 - +
  • [36] Expectation-Maximization Approach to Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu.
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 559 - 566
  • [37] An expectation-maximization approach to attitude sensor calibration
    Cheng, Yang
    Crassidis, John L.
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 1749 - 1764
  • [38] Expectation-maximization approaches to independent component analysis
    Zhong, MJ
    Tang, HW
    Tang, YY
    NEUROCOMPUTING, 2004, 61 : 503 - 512
  • [39] An expectation-maximization solution to interpolated OFDM systems
    Yazdan-Panah, Ali
    Makouei, Behrang Nosrat
    Vaughan, Rodney G.
    2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 52 - 55
  • [40] Fractional Stereo Matching Using Expectation-Maximization
    Xiong, Wei
    Chung, Hin Shun
    Jia, Jiaya
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (03) : 428 - 443