Non-parametric expectation-maximization for Gaussian mixtures

被引:0
|
作者
Sakuma, J [1 ]
Kobayashi, S [1 ]
机构
[1] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan
来源
ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Non-parametric EM algorithm, where nonparametric kernel density estimation is used instead of conventional parametric density estimation. Our proposal kernel function, Constructive Elliptical Basis Function (CEBF), is an extension of the EBF and can effectively represent ill-scaled and non-separable distributions without a covariance matrix even in high dimensionality in a nonparametric manner. The overlapping CEBFs with a fixed smoothing parameter can be used as an approximation of Gaussian distribution in a statistical sense. Using CEBFs as kernel functions, we propose Non-parametric Expectation-Maximization (NPEM) for the Gaussian Mixture Model (GMM). Then we show that NPEM obtains better estimation in terms of log likelihood than traditional EM algorithms when the given data set has high dimensionality or holds multiple components by numerical experiments.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [1] Non-parametric expectation maximization: A learning automata approach
    Abd-Almageed, W
    El-Osery, A
    Smith, CE
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 2996 - 3001
  • [2] Variational expectation-maximization training for Gaussian networks
    Nasios, N
    Bors, AG
    2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03, 2003, : 339 - 348
  • [3] Quantum Expectation-Maximization for Gaussian mixture models
    Kerenidis, Iordanis
    Luongo, Alessandro
    Prakash, Anupam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [4] An Expectation-Maximization Algorithm for Blind Separation of Noisy Mixtures Using Gaussian Mixture Model
    Fanglin Gu
    Hang Zhang
    Wenwu Wang
    Shan Wang
    Circuits, Systems, and Signal Processing, 2017, 36 : 2697 - 2726
  • [5] An Expectation-Maximization Algorithm for Blind Separation of Noisy Mixtures Using Gaussian Mixture Model
    Gu, Fanglin
    Zhang, Hang
    Wang, Wenwu
    Wang, Shan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (07) : 2697 - 2726
  • [6] The Expectation-Maximization Algorithm: Gaussian Case The EM Algorithm
    Iatan, Iuliana F.
    2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, : 590 - 593
  • [7] Phylogenetic motif detection by expectation-maximization on evolutionary mixtures
    Moses, AM
    Chiang, DY
    Eisen, MB
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2004, 2003, : 324 - 335
  • [8] Expectation-Maximization Bernoulli-Gaussian Approximate Message Passing
    Vila, Jeremy
    Schniter, Philip
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 799 - 803
  • [9] The expectation-maximization algorithm
    Moon, TK
    IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [10] Expectation-Maximization Gaussian-Mixture Approximate Message Passing
    Vila, Jeremy P.
    Schniter, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (19) : 4658 - 4672