RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: Role of an inversion channel at the AlN/Si interface

被引:40
作者
Luong, Tien Tung [1 ]
Lumbantoruan, Franky [1 ]
Chen, Yen-Yu [1 ]
Ho, Yen-Teng [1 ]
Weng, You-Chen [2 ]
Lin, Yueh-Chin [1 ]
Chang, Shane [1 ]
Chang, Edward-Yi [1 ,3 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Univ Rd 1001, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Inst Lighting & Energy Photon, Gaofa 3rd Rd 301, Tainan 71150, Taiwan
[3] Natl Chiao Tung Univ, Dept Elect Engn, Univ Rd 1001, Hsinchu 30010, Taiwan
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 07期
关键词
AlN; buffer; coplanar waveguides; GaN; high-electron mobility; inversion layer; losses; silicon; transistors; MICROSTRIP; SUBSTRATE; LAYER;
D O I
10.1002/pssa.201600944
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the epitaxial issues pertaining to the growth of AlGaN/GaN HEMTs on Si is the decrease of parasitic losses that can adversely impact the RF device performances. We characterized the microwave losses in coplanar waveguides (CPWs) on GaN-based high-electron-mobility-transistors (HEMTs) and their buffer layers on Silicon substrate, up to 40GHz. The RF losses depend not only on the crystalline quality but also on the residual tensile stress in AlN buffer, as well as its thickness. The mechanism of interfacial lossy channel induced by the piezoelectric field is discussed. Adopting a thin high-low-high temperature (HLH) AlN buffer can help to reduce the tensile stress leading to a reduction of RF losses. We suggest that a thinner p-type AlN and/or p-AlGaN-on-thin AlN near the interface can suppress the electron interfacial lossy channel, which helps the GaN-HEMT-on-HR Si to remain in a high frequency range and at high-temperature operation. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页数:7
相关论文
共 25 条
  • [1] Ali K. B., 2010, J TELECOMMUN INFO TE, V2010, P93
  • [2] Enhancement of breakdown voltage by A1N buffer layer thickness in A1GaN/GaN high-electron-mobility transistors on 4 in. diameter silicon
    Arulkumaran, S
    Egawa, T
    Matsui, S
    Ishikawa, H
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (12) : 1 - 3
  • [3] AlGaN/GaN HEMTs on Silicon Substrate With 206-GHz FMAX
    Bouzid-Driad, S.
    Maher, H.
    Defrance, N.
    Hoel, V.
    De Jaeger, J. -C.
    Renvoise, M.
    Frijlink, P.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2013, 34 (01) : 36 - 38
  • [4] Effect of Ga/Si interdiffusion on optical and transport properties of GaN layers grown on Si(111) by molecular-beam epitaxy
    Calleja, E
    Sanchez-Garcia, MA
    Basak, D
    Sanchez, FJ
    Calle, F
    Youinou, P
    Munoz, E
    Serrano, JJ
    Blanco, JM
    Villar, C
    Laine, T
    Oila, J
    Saarinen, K
    Hautojarvi, P
    Molloy, CH
    Somerford, DJ
    Harrison, I
    [J]. PHYSICAL REVIEW B, 1998, 58 (03): : 1550 - 1559
  • [5] AlGaN/GaN HEMT With 300-GHz fmax
    Chung, Jinwook W.
    Hoke, William E.
    Chumbes, Eduardo M.
    Palacios, Tomas
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (03) : 195 - 197
  • [6] Properties of AlN film grown on Si (111)
    Dai, Yiquan
    Li, Shuiming
    Sun, Qian
    Peng, Qing
    Gui, Chengqun
    Zhou, Yu
    Liu, Sheng
    [J]. JOURNAL OF CRYSTAL GROWTH, 2016, 435 : 76 - 83
  • [7] Evseev SB, 2013, IEEE BIPOL BICMOS, P77, DOI 10.1109/BCTM.2013.6798148
  • [8] Influence of AlN nucleation layer on vertical breakdown characteristics for GaN-on-Si
    Freedsman, J. J.
    Watanabe, A.
    Yamaoka, Y.
    Kubo, T.
    Egawa, T.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (02): : 424 - 428
  • [9] PROPERTIES OF MICROSTRIP LINE ON SI-SIO2 SYSTEM
    HASEGAWA, H
    FURUKAWA, M
    YANAI, H
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1971, MT19 (11) : 869 - +
  • [10] Simple modeling of coplanar waveguide on thick dielectric over lossy substrate
    Ko, JS
    Kim, BK
    Lee, K
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44 (05) : 856 - 861