Strong linear-piezoresistive-response of carbon nanostructures reinforced hyperelastic polymer nanocomposites

被引:78
作者
Arif, Muhamad F. [1 ]
Kumar, S. [1 ]
Gupta, Tejendra K. [1 ,4 ]
Varadarajan, Kartik M. [2 ,3 ]
机构
[1] Khalifa Univ Sci & Technol, Masdar Inst, Dept Mech & Mat Engn, POB 54224, Abu Dhabi, U Arab Emirates
[2] Massachusetts Gen Hosp, Harris Orthopaed Lab, Dept Orthopaed Surg, 55 Fruit St, Boston, MA 02114 USA
[3] Harvard Med Sch, Dept Orthopaed Surg, A-111,25 Shattuck St, Boston, MA USA
[4] Amity Univ, Amity Inst Appl Sci, Sect 125,POB 201313, Noida, India
关键词
Nanocomposites; Piezoresistivity; Strain sensor; Electrical conductivity; OVERHEAD POWER-LINES; STRAIN SENSORS; ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; COMPOSITES; NANOTUBE; POLY(DIMETHYLSILOXANE); TRANSPARENT; SENSITIVITY; PERFORMANCE;
D O I
10.1016/j.compositesa.2018.07.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we report highly strain-tolerant and sensitive strain sensors based on carbon nanostructures (CNS)-poly-dimethylsiloxane (PDMS) nanocomposites. CNS consist of clusters of aligned multiwall carbon-nanotubes (MWCNT) with high degree of entanglement and wall sharing between nanotubes. The unique features of CNS result in nanocomposites with very low electrical percolation threshold (0.05 wt% CNS), strong linear-piezoresistive-response up to 110% strain, and high sensitivity with gauge factor ranging from 8 to 47. We also present a simple analytical model for predicting resistivity evolution as a function of stretch considering incompressible hyperelastic behavior of CNS/PDMS nanocomposites. CNS/PDMS nanocomposites also show good hysteresis performance and stability up to 100 repetitive stretch/release cycles for 30% maximum strain. Tunable sensitivity and linear piezoresistivity coupled with high stretchability of CNS/PDMS nanocomposites demonstrated here suggest their potential for applications in wearable health and fitness monitoring devices.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 40 条
[1]   Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films [J].
Aguilar, J. O. ;
Bautista-Quijano, J. R. ;
Aviles, F. .
EXPRESS POLYMER LETTERS, 2010, 4 (05) :292-299
[2]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[3]   Tunable morphology and its influence on electrical, thermal and mechanical properties of carbon nanostructure-buckypaper [J].
Arif, Muhamad F. ;
Kumar, S. ;
Shah, Tushar .
MATERIALS & DESIGN, 2016, 101 :236-244
[4]   Chemical imaging in a surface forces apparatus: Confocal Raman spectroscopy of confined poly(dimethylsiloxane) [J].
Bae, SC ;
Lee, H ;
Lin, ZQ ;
Granick, S .
LANGMUIR, 2005, 21 (13) :5685-5688
[5]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[6]   Piezoresistance in Polymer Nanocomposites with High Aspect Ratio Particles [J].
Cattin, Cyrill ;
Hubert, Pascal .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) :1804-1811
[7]   Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor [J].
Cho, Donghwi ;
Park, Junyong ;
Kim, Jin ;
Kim, Taehoon ;
Kim, Jungmo ;
Park, Inkyu ;
Jeon, Seokwoo .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (20) :17370-17379
[8]   Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring [J].
Cho, Ji Hwan ;
Ha, Sung-Hun ;
Kim, Jong-Man .
NANOTECHNOLOGY, 2018, 29 (15)
[9]   Electro-mechanical properties of triblock copolymer styrene-butadiene-styrene/carbon nanotube composites for large deformation sensor applications [J].
Costa, P. ;
Ferreira, A. ;
Sencadas, V. ;
Viana, J. C. ;
Lanceros-Mendez, S. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 201 :458-467
[10]   Recent progress of flexible and wearable strain sensors for human-motion monitoring [J].
Ge, Gang ;
Huang, Wei ;
Shao, Jinjun ;
Dong, Xiaochen .
JOURNAL OF SEMICONDUCTORS, 2018, 39 (01)