Robust Model-Free Multiclass Probability Estimation

被引:26
|
作者
Wu, Yichao [1 ]
Zhang, Hao Helen [1 ]
Liu, Yufeng [2 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Univ N Carolina, Dept Stat & Operat Res, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Fisher consistency; Hard classification; Multicategory classification; Probability estimation; Soft classification; SVM; SUPPORT VECTOR MACHINES; CLASSIFICATION;
D O I
10.1198/jasa.2010.tm09107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Classical statistical approaches for multiclass probability estimation are typically based on regression technique, such as multiple logistic regression, or density estimation approaches such as linear discriminant analysis (LDA) and quadratic discriminant analysis (ODA) These methods often make certain assumptions on the form of probability functions or on the underlying distributions of subclasses In this article. we develop a model-free procedure to estimate multiclass probabilities based on large-margin classifiers In particular, the new estimation scheme is employed by solving a series of weighted large-mail:in classifiers and then systematically extracting the probability information from these multiple classification rules A main advantage of the proposed probability estimation technique is that it does not impose any strong parametric assumption on the underlying distribution and can be applied for a wide range of large-margin classification methods A general computational algorithm is developed for class probability estimation Furthermore, we establish asymptotic consistency of the probability estimates Both simulated and real data examples are presented to illustrate competitive performance of the new approach and compare it with several other existing methods
引用
收藏
页码:424 / 436
页数:13
相关论文
共 50 条
  • [1] An efficient model-free estimation of multiclass conditional probability
    Xu, Tu
    Wang, Junhui
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (12) : 2079 - 2088
  • [2] Robust online scale estimation in time series: A model-free approach
    Gelper, Sarah
    Schettlinger, Karen
    Croux, Christophe
    Gather, Ursula
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 335 - 349
  • [3] Model-Free, Regularized, Fast, and Robust Analytical Orientation Distribution Function Estimation
    Cheng, Jian
    Ghosh, Aurobrata
    Deriche, Rachid
    Jiang, Tianzi
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I, 2010, 6361 : 648 - +
  • [4] Model-free estimation of the psychometric function
    Zychaluk, Kamila
    Foster, David H.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2009, 71 (06) : 1414 - 1425
  • [5] Model-free estimation of the psychometric function
    Kamila Zchaluk
    David H. Foster
    Attention, Perception, & Psychophysics, 2009, 71 : 1414 - 1425
  • [6] Cooperative Adaptive Model-Free Control With Model-Free Estimation and Online Gain Tuning
    Safaei, Ali
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 8642 - 8654
  • [7] Regression-based, regression-free and model-free approaches for robust online scale estimation
    Schettlinger, Karen
    Gelper, Sarah
    Gather, Ursula
    Croux, Christophe
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (09) : 1023 - 1040
  • [8] Practical model-free robust estimation and control design for an underwater soft IPMC actuator
    Khawwaf, Jasim
    Zheng, Jinchuan
    Wang, Hai
    Man, Zhihong
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (11): : 1508 - 1515
  • [9] Model-free Estimation of Recent Genetic Relatedness
    Conomos, Matthew P.
    Reiner, Alexander P.
    Weir, Bruce S.
    Thornton, Timothy A.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (01) : 127 - 148
  • [10] Some contributions to estimation for model-free control
    Carrillo, Francisco Javier
    Rotella, Frederic
    IFAC PAPERSONLINE, 2015, 48 (28): : 150 - 155