Chaotic dynamics for two-dimensional tent maps

被引:14
作者
Pumarino, Antonio [1 ]
Angel Rodriguez, Jose [1 ]
Carles Tatjer, Joan [2 ]
Vigil, Enrique [1 ]
机构
[1] Univ Oviedo, Dept Math, E-33007 Oviedo, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada & Anal, E-08080 Barcelona, Spain
关键词
piecewise linear maps; strange attractors; invariant measures; CONTINUOUS INVARIANT-MEASURES; DIFFEOMORPHISMS; ATTRACTORS;
D O I
10.1088/0951-7715/28/2/407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
引用
收藏
页码:407 / 434
页数:28
相关论文
共 18 条
[11]  
KELLER G, 1979, CR ACAD SCI A MATH, V289, P625
[12]   EXISTENCE OF INVARIANT MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
LASOTA, A ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 186 (459) :481-488
[13]  
Mira C., 1996, Chaotic Dynamics in Two-Dimensional Noninvertible Maps, DOI DOI 10.1142/2252
[14]   Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms [J].
Pumarino, Antonio ;
Tatjer, Joan Carles .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 8 (04) :971-1005
[15]   Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms [J].
Pumarino, Antonio ;
Tatjer, Joan Carles .
NONLINEARITY, 2006, 19 (12) :2833-2852
[16]   EXPANDING BAKER MAPS AS MODELS FOR THE DYNAMICS EMERGING FROM 3D-HOMOCLINIC BIFURCATIONS [J].
Pumarino, Antonio ;
Angel Rodriguez, Jose ;
Carles Tatjer, Joan ;
Vigil, Enrique .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (02) :523-541
[17]   Absolutely continuous invariant measures for multidimensional expanding maps [J].
Saussol, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) :223-248
[18]  
Tatjer JC, 2001, ERGOD THEOR DYN SYST, V21, P249