Semiconcavity for optimal control problems with exit time

被引:0
|
作者
Cannarsa, P [1 ]
Pignotti, C [1 ]
Sinestrari, C [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
optimal control problems; exit time problems; dynamic programming; optimality conditions; semiconcavity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a semiconcavity result is obtained for the value function of an optimal exit time problem. The related state equation is of general form (y) over dot (t) = f(y(t), u(t)), y(t) is an element of R-n, u(t) is an element of U subset of R-m. However, suitable assumptions are needed relating f with the running and exit costs. The semiconcavity property is then applied to obtain necessary optimality conditions, through the formulation of a suitable version of the Maximum Principle, and to study the singular set of the value function.
引用
收藏
页码:975 / 997
页数:23
相关论文
共 50 条