High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation

被引:26
作者
Ma, Cuihua [1 ,2 ]
Li, Qinghua [1 ,2 ]
Wang, Zhi [1 ,2 ]
Gao, Min [1 ,2 ]
Wang, Jixiao [1 ,2 ]
Cao, Xingzhong [3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Chem Engn Res Ctr, Yaguan Rd, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, State Key Lab Chem Engn, Tianjin Key Lab Membrane Sci & Desalinat Technol, Tianjin 300072, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Key Lab Nucl Radiat & Nucl Energy Technol, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Gas separation membrane; Rigid contortion units; Interfacial polymerization; Selectivity; REVERSE-OSMOSIS MEMBRANES; FACILITATED TRANSPORT MEMBRANE; POSITRON-ANNIHILATION; COMPOSITE MEMBRANES; POLYAMIDE MEMBRANES; CARBON-DIOXIDE; MICROPOROSITY; HYDROGEN; CAPTURE;
D O I
10.1016/j.memsci.2022.120459
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Polymeric membranes have been widely researched for several decades due to their good processability and low cost. Herein, high-performance thin-film composite (TFC) membranes were prepared by interfacial polymerization using N-methyldiethanolamine (MEDA), 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethylspirobisindane (TTSBI) and trimesoylchloride (TMC). The effects of segmental chain motion on the gas separation performance of the TFC membranes were investigated for the polymeric membranes featuring rigid and contorted sites along the polymer backbone by inducting TTSBI. The results suggested that the introduction of rigid and contorted structures improved the cavities in the membrane, impeded the transport of larger gas, and enhanced the diffusive selectivity. Therefore, the TFC membrane exhibited high permeance and high selectivity with CO2 permeance of about 1800 GPU and CO2/N-2 selectivity of 370 at 0.11 MPa, which is a remarkable improvement in gas separation performance.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Thermally Rearranged Polybenzoxazoles Containing Bulky Adamantyl Groups from Ortho-Substituted Precursor Copolyimides [J].
Aguilar-Lugo, Carla ;
Alvarez, Cristina ;
Lee, Young Moo ;
de la Campa, Jose G. ;
Lozano, Angel E. .
MACROMOLECULES, 2018, 51 (05) :1605-1619
[2]   Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM [J].
Akin, Oguz ;
Temelli, Feral .
DESALINATION, 2011, 278 (1-3) :387-396
[3]  
Borisov I., J MATER CHEM, V7, P6417
[4]   Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials [J].
Budd, PM ;
Ghanem, BS ;
Makhseed, S ;
McKeown, NB ;
Msayib, KJ ;
Tattershall, CE .
CHEMICAL COMMUNICATIONS, 2004, (02) :230-231
[5]   FORMATION AND CHARACTERIZATION OF POLYAMIDE MEMBRANES VIA INTERFACIAL POLYMERIZATION [J].
CHAI, GY ;
KRANTZ, WB .
JOURNAL OF MEMBRANE SCIENCE, 1994, 93 (02) :175-192
[6]   A new perspective of functionalized MWCNT incorporated thin film nanocomposite hollow fiber membranes for the separation of various gases [J].
Choi, Ook ;
Karki, Sachin ;
Pawar, Radheshyam R. ;
Hazarika, Swapnali ;
Ingole, Pravin G. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01)
[7]  
Comesan~a-Gandara B., ENERG ENVIRON SCI, V12
[8]   Fabrication and Evaluation of a Blend Facilitated Transport Membrane for CO2/CH4 Separation [J].
Deng, Liyuan ;
Hagg, May-Britt .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (44) :11139-11150
[9]   Interfacial polycondensation-Modeling of kinetics and film properties [J].
Dhumal, Sunil S. ;
Wagh, Shrikant J. ;
Suresh, A. K. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 325 (02) :758-771
[10]   Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization [J].
Freger, V .
LANGMUIR, 2003, 19 (11) :4791-4797