Ultralow-Power and Multisensory Artificial Synapse Based on Electrolyte-Gated Vertical Organic Transistors

被引:111
作者
Liu, Guocai [1 ,2 ]
Li, Qingyuan [1 ,2 ]
Shi, Wei [1 ]
Liu, Yanwei [1 ,2 ]
Liu, Kai [1 ]
Yang, Xueli [1 ,2 ]
Shao, Mingchao [1 ,2 ]
Guo, Ankang [1 ,2 ]
Huang, Xin [1 ]
Zhang, Fan [1 ]
Zhao, Zhiyuan [1 ]
Guo, Yunlong [1 ]
Liu, Yunqi [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Organ Solids, Beijing Natl Lab Mol Sci, Inst Chem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
artificial synapses; electrolyte gates; multiple perceptions; ultralow energy consumption; vertical organic field-effect transistors; MEMRISTOR; NETWORK;
D O I
10.1002/adfm.202200959
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioinspired electronics have shown great potential in the field of artificial intelligence and brain-like science. Low energy consumption and multifunction are key factors for its application. Here, multisensory artificial synapse and neural networks based on electrolyte-gated vertical organic field-effect transistors (VOFETs) are first developed. The channel length of the organic transistor is scaled down to 30 nm through cross-linking strategy. Owing to the short channel length and extremely large capacitance of the electric double layer formed at the electrolyte-channel interface, the minimum power consumption of one synaptic event is 0.06 fJ, which is significantly lower than that required by biological synapses (1-10 fJ). Moreover, the artificial synapse can be trained to learn and memory images in a 5 x 5 synapse array and emulate the human brain's spatiotemporal information processing and sound azimuth detection. Finally, the artificial tongue is designed using the synaptic transistor that can discriminate acidity. Overall, this study provides new insights into realizing energy-efficient artificial synapses and mimicking biological sensory systems.
引用
收藏
页数:10
相关论文
共 42 条
[1]  
Atluri PP, 1996, J NEUROSCI, V16, P5661
[2]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[3]   Photonic Synapses with Ultra-Low Energy Consumption Based on Vertical Organic Field-Effect Transistors [J].
Chen, Tianqi ;
Wang, Xin ;
Hao, Dandan ;
Dai, Shilei ;
Ou, Qingqing ;
Zhang, Junyao ;
Huang, Jia .
ADVANCED OPTICAL MATERIALS, 2021, 9 (08)
[4]   A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory [J].
Chicca, E ;
Badoni, D ;
Dante, V ;
D'Andreagiovanni, M ;
Salina, G ;
Carota, L ;
Fusi, S ;
Del Giudice, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05) :1297-1307
[5]   Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
Xia, Yu ;
Kim, Bongsoo ;
He, Yiyong ;
Renn, Michael J. ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
NATURE MATERIALS, 2008, 7 (11) :900-906
[6]   Vertical organic synapse expandable to 3D crossbar array [J].
Choi, Yongsuk ;
Oh, Seyong ;
Qian, Chuan ;
Park, Jin-Hong ;
Cho, Jeong Ho .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   A Fully Printed Flexible MoS2 Memristive Artificial Synapse with Femtojoule Switching Energy [J].
Feng, Xuewei ;
Li, Yida ;
Wang, Lin ;
Chen, Shuai ;
Yu, Zhi Gen ;
Tan, Wee Chong ;
Macadam, Nasiruddin ;
Hu, Guohua ;
Huang, Li ;
Chen, Li ;
Gong, Xiao ;
Chi, Dongzhi ;
Hasan, Tawfique ;
Thean, Aaron Voon-Yew ;
Zhang, Yong-Wei ;
Ang, Koh-Wee .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (12)
[8]   Synaptic stability and plasticity in a floating world [J].
Gerrow, Kimberly ;
Triller, Antoine .
CURRENT OPINION IN NEUROBIOLOGY, 2010, 20 (05) :631-639
[9]   Lateral Artificial Synapses on Hybrid Perovskite Platelets with Modulated Neuroplasticity [J].
Gong, Jiangdong ;
Yu, Haiyang ;
Zhou, Xin ;
Wei, Huanhuan ;
Ma, Mingxue ;
Han, Hong ;
Zhang, Shuo ;
Ni, Yao ;
Li, Yuelong ;
Xu, Wentao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
[10]   One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications [J].
Ham, Seonggil ;
Kang, Minji ;
Jang, Seonghoon ;
Jang, Jingon ;
Choi, Sanghyeon ;
Kim, Tae-Wook ;
Wang, Gunuk .
SCIENCE ADVANCES, 2020, 6 (28)