Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)

被引:80
|
作者
Morita, A
Horie, H
Fujii, Y
Takatsu, S
Watanabe, N
Yagi, A
Yokota, H
机构
[1] Shizuoka Univ, Fac Agr, Shizuoka 4228529, Japan
[2] Natl Inst Vegetable & Tea Sci, Ano, Mie 5142392, Japan
关键词
Camellia sinensis; theaceac; aluminum; citric acid; malic acid; Al-27; NMR; F-19;
D O I
10.1016/j.phytochem.2004.08.043
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To identify the chemical forms of aluminum (Al) transported from roots to shoots of tea plants (C sinensis L.), Al-27-nuclear magnetic resonance and F-19 NMR spectroscopy were used to analyze xylem sap. The concentration of Al in collected xylem sap was 0.29 mM, twice as high as that of F. Catechins were not detected in xylem sap. The concentration of malic acid in xylem sap was higher than that of citric acid, whereas the concentration of oxalic acid was negligible. There were two signals in the Al-27 NMR spectra of xylem sap, a larger signal at 11 ppm and a smaller one at -1.5 ppm. The former signal was consistent with the peak for an Al-citrate model solution, suggesting that an Al-citrate complex was present in xylem sap. Although the latter signal at -1.5 ppm was thought to indicate the presence of an Al-F complex (at 1.7 ppm) in xylem sap, there was only one signal at -122 ppm in the F-19 NMR spectrum of xylem sap, indicating that the main F complex in xylem sap was F-. These results indicate that Al might be translocated as a complex with citrate, while Al-malate, Al-oxalate and Al-F complexes are not major Al complexes in xylem sap of tea plants. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2775 / 2780
页数:6
相关论文
共 50 条
  • [1] COMPOSITION OF XYLEM SAP OF TEA PLANTS (CAMELLIA-SINENSIS-L)
    SELVENDRAN, RR
    SABARATNAM, S
    ANNALS OF BOTANY, 1971, 35 (141) : 679 - +
  • [2] Effect of aluminum on callose synthesis in root tips of tea (Camellia sinensis L.) plants
    Lian, CL
    Oiwake, Y
    Yokota, H
    Wang, G
    Konishi, S
    SOIL SCIENCE AND PLANT NUTRITION, 1998, 44 (04) : 695 - 700
  • [3] Theanine transporters identified in tea plants (Camellia sinensis L.)
    Dong, Chunxia
    Li, Fang
    Yang, Tianyuan
    Feng, Lin
    Zhang, Shupei
    Li, Fangdong
    Li, Weihong
    Xu, Guohua
    Bao, Shilai
    Wan, Xiaochun
    Lucas, William J.
    Zhang, Zhaoliang
    PLANT JOURNAL, 2020, 101 (01): : 57 - 70
  • [4] Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.)
    Xiaoyun Yi
    Sha Qiao
    Lifeng Ma
    Jie Wang
    Jianyun Ruan
    Environmental Geochemistry and Health, 2017, 39 : 1005 - 1016
  • [5] Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.)
    Yi, Xiaoyun
    Qiao, Sha
    Ma, Lifeng
    Wang, Jie
    Ruan, Jianyun
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2017, 39 (05) : 1005 - 1016
  • [6] Metabolic Evidence on Vintage Effect in Tea (Camellia sinensis L.) Plants
    Mozumder, N. H. M. Rubel
    Hwang, Kyeong Hwan
    Lee, Min-Seuk
    Kim, Eun-Hee
    Hong, Young-Shick
    APPLIED BIOLOGICAL CHEMISTRY, 2023, 66 (01)
  • [7] Metabolic Evidence on Vintage Effect in Tea (Camellia sinensis L.) Plants
    N. H. M. Rubel Mozumder
    Kyeong Hwan Hwang
    Min-Seuk Lee
    Eun-Hee Kim
    Young-Shick Hong
    Applied Biological Chemistry, 66
  • [8] Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)
    Morita, Akio
    Yanagisawa, Osamu
    Takatsu, Satoshi
    Maeda, Setsuko
    Hiradate, Syuntaro
    PHYTOCHEMISTRY, 2008, 69 (01) : 147 - 153
  • [9] Interactions between aluminum and boron in tea (Camellia sinensis) plants
    Roghieh Hajiboland
    Soodabe Bastani
    Sara Bahrami-Rad
    Charlotte Poschenrieder
    Acta Physiologiae Plantarum, 2015, 37
  • [10] Interactions between aluminum and boron in tea (Camellia sinensis) plants
    Hajiboland, Roghieh
    Bastani, Soodabe
    Bahrami-Rad, Sara
    Poschenrieder, Charlotte
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (03)