The novel soliton solutions for the conformable perturbed nonlinear Schrodinger equation

被引:60
作者
Yepez-Martinez, Huitzilin [1 ]
Pashrashid, Arash [2 ]
Francisco Gomez-Aguilar, Jose [3 ]
Akinyemi, Lanre [4 ]
Rezazadeh, Hadi [5 ]
机构
[1] Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
[2] Sharif Univ Technol Tehran, Dept Comp Engn, Tehran, Iran
[3] CONACyT Ctr Nacl Invest & Desarrollo Tecnol Tecno, Nacl Mexico Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[5] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 08期
关键词
Perturbed nonlinear Schrodinger equation; conformable derivative; quadratic-cubic law; quadratic-quartic-quintic law; cubic-quintic-septic law; sub-equation method; TRAVELING-WAVE SOLUTIONS; OPTICAL SOLITONS; SYSTEM; SYMMETRIES; MODELS;
D O I
10.1142/S0217984921505977
中图分类号
O59 [应用物理学];
学科分类号
摘要
The sub-equation method is implemented to construct exact solutions for the conformable perturbed nonlinear Schrodinger equation. In this paper, we consider three different types of nonlinear perturbations: The quadratic-cubic law, the quadratic-quartic-quintic law, and the cubic-quintic-septic law. The properties of the conformable derivative are discussed and applied with the help of a suitable wave transform that converts the governing model to a nonlinear ordinary differential equation. Furthermore, the order of the expected polynomial-type solution is obtained using the homogeneous balancing approach. Dark and singular soliton solutions are derived.
引用
收藏
页数:24
相关论文
共 55 条
[31]  
Javeed S., 2018, Adv. Differ. Equ, V2018, P1
[32]   Soliton Solutions of Mathematical Physics Models Using the Exponential Function Technique [J].
Javeed, Shumaila ;
Alimgeer, Khurram Saleem ;
Nawaz, Sidra ;
Waheed, Asif ;
Suleman, Muhammad ;
Baleanu, Dumitru ;
Atif, M. .
SYMMETRY-BASEL, 2020, 12 (01)
[33]   Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers [J].
Javeed, Shumaila ;
Saif, Summaya ;
Waheed, Asif ;
Baleanu, Dumitru .
RESULTS IN PHYSICS, 2018, 9 :1275-1281
[34]   Optical soliton perturbation with exotic non-Kerr law nonlinearities [J].
Jawad, Anwar Jaafar Mohamad ;
Abu-AlShaeer, Mahmood Jawad ;
Majid, Fayequa B. ;
Biswas, Anjan ;
Zhou, Qin ;
Belic, Milivoj .
OPTIK, 2018, 158 :1370-1379
[35]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[36]   Optical soliton perturbation in a non-Kerr law media [J].
Kohl, Russell ;
Biswas, Anjan ;
Milovic, Daniela ;
Zerrad, Essaid .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (04) :647-662
[37]   New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity [J].
Korpinar, Zeliha ;
Inc, Mustafa ;
Bayram, Mustafa ;
Hashemi, Mir Sajjad .
OPTIK, 2020, 206
[38]   Optical solitons of space-time fractional Fokas-Lenells equation with two versatile integration architectures [J].
Raza, N. ;
Osman, M. S. ;
Abdel-Aty, Abdel-Haleem ;
Abdel-Khalek, Sayed ;
Besbes, Hatem R. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[39]   New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis [J].
Sahoo, Subhadarshan ;
Ray, Santanu Saha ;
Abdou, Mohamed Aly Mohamed ;
Inc, Mustafa ;
Chu, Yu-Ming .
SYMMETRY-BASEL, 2020, 12 (06) :1-14
[40]   Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique [J].
Seadawy, Aly R. ;
Bilal, M. ;
Younis, M. ;
Rizvi, S. T. R. ;
Althobaiti, Saad ;
Makhlouf, M. M. .
CHAOS SOLITONS & FRACTALS, 2021, 144