The novel soliton solutions for the conformable perturbed nonlinear Schrodinger equation

被引:60
作者
Yepez-Martinez, Huitzilin [1 ]
Pashrashid, Arash [2 ]
Francisco Gomez-Aguilar, Jose [3 ]
Akinyemi, Lanre [4 ]
Rezazadeh, Hadi [5 ]
机构
[1] Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
[2] Sharif Univ Technol Tehran, Dept Comp Engn, Tehran, Iran
[3] CONACyT Ctr Nacl Invest & Desarrollo Tecnol Tecno, Nacl Mexico Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[5] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 08期
关键词
Perturbed nonlinear Schrodinger equation; conformable derivative; quadratic-cubic law; quadratic-quartic-quintic law; cubic-quintic-septic law; sub-equation method; TRAVELING-WAVE SOLUTIONS; OPTICAL SOLITONS; SYSTEM; SYMMETRIES; MODELS;
D O I
10.1142/S0217984921505977
中图分类号
O59 [应用物理学];
学科分类号
摘要
The sub-equation method is implemented to construct exact solutions for the conformable perturbed nonlinear Schrodinger equation. In this paper, we consider three different types of nonlinear perturbations: The quadratic-cubic law, the quadratic-quartic-quintic law, and the cubic-quintic-septic law. The properties of the conformable derivative are discussed and applied with the help of a suitable wave transform that converts the governing model to a nonlinear ordinary differential equation. Furthermore, the order of the expected polynomial-type solution is obtained using the homogeneous balancing approach. Dark and singular soliton solutions are derived.
引用
收藏
页数:24
相关论文
共 55 条
[1]   Solitary-wave solutions of the Klein-Gordon equation with quintic nonlinearity [J].
Abazari, R. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2013, 54 (03) :397-403
[2]   Solitary wave solutions of coupled boussinesq equation [J].
Abazari, Reza ;
Jamshidzadeh, Shabnam ;
Biswas, Anjan .
COMPLEXITY, 2016, 21 (S2) :151-155
[3]   Exact solitary wave solutions of the complex Klein-Gordon equation [J].
Abazari, Reza ;
Jamshidzadeh, Shabnam .
OPTIK, 2015, 126 (19) :1970-1975
[4]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[5]   On soliton solutions of time fractional form of Sawada-Kotera equation [J].
Afzal, Usman ;
Raza, Nauman ;
Murtaza, Isma Ghulam .
NONLINEAR DYNAMICS, 2019, 95 (01) :391-405
[6]  
Agrawal GP, 2000, LECT NOTES PHYS, V542, P195
[7]   The interaction of W-shaped rational solitons with kink wave for the nonlinear Schrodinger equation with anti-cubic nonlinearity [J].
Ahmed, Iftikhar ;
Seadawy, Aly R. ;
Lu, Dianchen .
MODERN PHYSICS LETTERS B, 2020, 34 (12)
[8]   The optical soliton solutions of generalized coupled nonlinear Schrodinger-Korteweg-de Vries equations [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Akpan, Udoh ;
Oluwasegun, Kayode .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (07)
[9]   Optical solitons for weakly nonlocal Schrodinger equation with parabolic law nonlinearity and external potential [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa .
OPTIK, 2021, 230
[10]  
Alzaidy J. F., 2013, Br. J. Math. Comput. Sci, V3, P153, DOI [10.9734/BJMCS/2013/2908, DOI 10.9734/BJMCS/2013/2908]