The novel soliton solutions for the conformable perturbed nonlinear Schrodinger equation

被引:59
|
作者
Yepez-Martinez, Huitzilin [1 ]
Pashrashid, Arash [2 ]
Francisco Gomez-Aguilar, Jose [3 ]
Akinyemi, Lanre [4 ]
Rezazadeh, Hadi [5 ]
机构
[1] Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
[2] Sharif Univ Technol Tehran, Dept Comp Engn, Tehran, Iran
[3] CONACyT Ctr Nacl Invest & Desarrollo Tecnol Tecno, Nacl Mexico Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[5] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 08期
关键词
Perturbed nonlinear Schrodinger equation; conformable derivative; quadratic-cubic law; quadratic-quartic-quintic law; cubic-quintic-septic law; sub-equation method; TRAVELING-WAVE SOLUTIONS; OPTICAL SOLITONS; SYSTEM; SYMMETRIES; MODELS;
D O I
10.1142/S0217984921505977
中图分类号
O59 [应用物理学];
学科分类号
摘要
The sub-equation method is implemented to construct exact solutions for the conformable perturbed nonlinear Schrodinger equation. In this paper, we consider three different types of nonlinear perturbations: The quadratic-cubic law, the quadratic-quartic-quintic law, and the cubic-quintic-septic law. The properties of the conformable derivative are discussed and applied with the help of a suitable wave transform that converts the governing model to a nonlinear ordinary differential equation. Furthermore, the order of the expected polynomial-type solution is obtained using the homogeneous balancing approach. Dark and singular soliton solutions are derived.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] New soliton solutions to the perturbed nonlinear Schrodinger equation by exp(- Φ(ξ))-expansion method
    Arshed, Saima
    OPTIK, 2020, 220 (220):
  • [2] On global behavior for complex soliton solutions of the perturbed nonlinear Schrodinger equation in nonlinear optical fibers
    Osman, M. S.
    Almusawa, Hassan
    Tariq, Kalim U.
    Anwar, Sadia
    Kumar, Sachin
    Younis, Muhammad
    Ma, Wen-Xiu
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (05) : 431 - 443
  • [3] Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrodinger equation
    Gao, Wei
    Ghanbari, Behzad
    Gunerhan, Hatira
    Baskonus, Haci Mehmet
    MODERN PHYSICS LETTERS B, 2020, 34 (03):
  • [4] New optical soliton solutions of fractional perturbed nonlinear Schrodinger equation in nanofibers
    Ray, S. Saha
    Das, N.
    MODERN PHYSICS LETTERS B, 2022, 36 (02):
  • [5] Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrodinger equation and stability analysis
    Akram, Sonia
    Ahmad, Jamshad
    Shafqat-Ur-Rehman
    Sarwar, Shahzad
    Ali, Asghar
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (05)
  • [6] New perturbed conformable Boussinesq-like equation: Soliton and other solutions
    Nisar, Kottakkaran Sooppy
    Akinyemi, Lanre
    Inc, Mustafa
    Senol, Mehmet
    Mirzazadeh, Mohammad
    Houwe, Alphonse
    Abbagari, Souleymanou
    Rezazadeh, Hadi
    RESULTS IN PHYSICS, 2022, 33
  • [7] Optical Solitary Wave Solutions for the Conformable Perturbed Nonlinear Schrodinger Equation with Power Law Nonlinearity
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    Gulsen, Selahattin
    Baleanu, Dumitru
    JOURNAL OF ADVANCED PHYSICS, 2018, 7 (01) : 49 - 57
  • [8] New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity
    Neirameh A.
    SeMA Journal, 2016, 73 (4) : 309 - 323
  • [9] New soliton solutions to the nonlinear complex fractional Schrodinger equation and the conformable time-fractional Klein-Gordon equation with quadratic and cubic nonlinearity
    Alam, Md Nur
    Li, Xin
    PHYSICA SCRIPTA, 2020, 95 (04)
  • [10] Dynamical solutions and quadratic resonance of nonlinear perturbed Schrodinger equation
    Behera, Sidheswar
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 8