Differences in isoform composition of starch synthase between leaves and embryos of pea (Pisum sativum L.)

被引:0
|
作者
Tomlinson, K [1 ]
Craig, J [1 ]
Smith, AM [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Norwich NR4 7UH, Norfolk, England
关键词
embryo (pea); isoform (starch synthase); leaf (starch synthesis); Pisum (starch synthesis); starch synthase (isoforms);
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Isoforms of starch synthase (EC 2.4.1.21) in pea (Pisum sativum L.) leaves have been identified and compared with those in developing pea embryos. Purification and immunoprecipitation experiments show that most of the soluble starch synthase activity of the leaf is contributed by a novel isoform (SSIII) that is antigenically related to the major soluble isoform of the potato tuber. The major soluble isoform of the embryo (SSII) is also present in the leaf, but contributes only 15% of the soluble activity. Study of the leaf starch of lam mutant peas, which lack the abundant granule-bound isoform responsible for amylose synthesis in the embryo (GBSSI), indicates that GBSSI is not responsible for the synthesis of amylose-like material in the leaf. Leaves appear to contain a novel granule-bound isoform, antigenically related to GBSSI. The implications of the results for understanding of the role of isoforms of starch synthase are discussed.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [41] Genetic variation in pea (Pisum) dehydrins: sequence elements responsible for length differences between dehydrin alleles and between dehydrin loci in Pisum sativum L.
    E. Grosselindemann
    M. Robertson
    J. A. Wilmer
    P. M. Chandler
    Theoretical and Applied Genetics, 1998, 96 : 1186 - 1192
  • [42] Genomics assisted mapping of earliness in pea (Pisum sativum L.)
    Parteek Kumar
    Saurabh Yadav
    Manisha Rani
    Deepika Narang
    Deepak Singla
    Rajinder Kumar Dhall
    Parveen Chhuneja
    Priti Sharma
    Molecular Biology Reports, 2025, 52 (1)
  • [43] Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.)
    K. Loridon
    K. McPhee
    J. Morin
    P. Dubreuil
    M. L. Pilet-Nayel
    G. Aubert
    C. Rameau
    A. Baranger
    C. Coyne
    I. Lejeune-Hènaut
    J. Burstin
    Theoretical and Applied Genetics, 2005, 111 : 1022 - 1031
  • [44] Sources of high tolerance to salinity in pea (Pisum sativum L.)
    Leonforte, A.
    Forster, J. W.
    Redden, R. J.
    Nicolas, M. E.
    Salisbury, P. A.
    EUPHYTICA, 2013, 189 (02) : 203 - 216
  • [45] Regeneration of Pea (Pisum sativum L.) by a cyclic organogenic system
    Emmanouil N. Tzitzikas
    Marjan Bergervoet
    Krit Raemakers
    Jean-Paul Vincken
    Andre van Lammeren
    Richard G. F. Visser
    Plant Cell Reports, 2004, 23 : 453 - 460
  • [46] Application of SNPs to improve yield of Pisum sativum L. (pea)
    Mehmood, Ansar
    Murtaza, Ghulam
    IET NANOBIOTECHNOLOGY, 2017, 11 (04) : 390 - 394
  • [47] Regulation of cotyledonary bud outgrowth in pea (Pisum sativum L.)
    Kucsera, Attila
    Balla, Jozef
    Prochazka, Stanislav
    MENDELNET 2019: PROCEEDINGS OF 26TH INTERNATIONAL PHD STUDENTS CONFERENCE, 2019, : 443 - 446
  • [48] Genetic analysis of pod dehiscence in pea (Pisum sativum L.)
    Weeden, NF
    Brauner, S
    Przyborowski, JA
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2002, 7 (2B) : 657 - 663
  • [49] Root growth of green pea (Pisum sativum L.) genotypes
    Thorup-Kristensen, K
    CROP SCIENCE, 1998, 38 (06) : 1445 - 1451
  • [50] New allele of the COCHLEATA gene in pea Pisum sativum L.
    A. A. Sinjushin
    G. A. Khartina
    S. A. Gostimskii
    Russian Journal of Genetics, 2011, 47 : 1422 - 1427