Binary quadratic forms represented by a sum of nonzero squares

被引:4
作者
Ji, Yun-Seong [1 ]
Kim, Myung-Hwan [1 ]
Oh, Byeong-Kweon [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
Sum of nonzero squares; Binary quadratic forms;
D O I
10.1016/j.jnt.2014.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1911, Dubouis determined all positive integers that are represented by a sum of k positive squares for any k >= 4. In this article, we generalize Dubouis' result to the binary case. We determine all binary forms that are represented by a sum of k nonzero squares for any k >= 5. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 11 条
[1]  
Bhargava M., 1999, Contemp. Math., V272, P27
[2]  
Conway J H., 2000, CONT MATH, P23, DOI [10.1090/conm/272/04394, DOI 10.1090/conm/272/04394]
[3]  
Dubouis E., 1911, INTERMEDIAIRE MATH, V18, P55
[4]  
Kim B.M., 1999, Contemp. Math., V249, P51
[5]   Representations of positive definite senary integral quadratic forms by a sum of squares [J].
Kim, MH ;
Oh, BK .
JOURNAL OF NUMBER THEORY, 1997, 63 (01) :89-100
[6]  
Kitaoka Y., 1993, Arithmetic of Quadratic Forms
[7]  
Ko C., 1937, Q J MATH OXFORD, Vos-8, P81, DOI DOI 10.1093/QMATH/OS-8.1.81
[8]  
Lagrange J.L., 1770, OEUVRES, P189
[9]  
Mordell L J., 1930, Q J MATH OXFORD, Vos-1, P276, DOI [10.1093/qmath/os-1.1.276, DOI 10.1093/QMATH/OS-1.1.276]
[10]   Universal Z-lattices of minimal rank [J].
Oh, BK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) :683-689