KAHLER METRIC ON THE SPACE OF CONVEX REAL PROJECTIVE STRUCTURES ON SURFACE

被引:9
作者
Kim, Inkang [1 ]
Zhang, Genkai [2 ]
机构
[1] KIAS, Sch Math, Heogiro 85, Seoul 130722, South Korea
[2] Gothenburg Univ, Chalmers Univ Technol & Math Sci, Math Sci, SE-41296 Gothenburg, Sweden
关键词
RIEMANN SURFACES; TEICHMULLER SPACE; CANONICAL METRICS; MODULI SPACE; MANIFOLDS; BUNDLES; DIFFERENTIALS; CURVATURE; CURVES;
D O I
10.4310/jdg/1493172095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the space of convex real projective structures on a surface of genus g >= 2 admits a mapping class group invariant Kahler metric where Teichmuller space with Weil-Petersson metric is a totally geodesic complex submanifold.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 33 条
[1]  
Ahlfors L. V., 1961, J ANAL MATH, V9, P161
[2]   SOME REMARKS ON TEICHMULLERS SPACE OF RIEMANN SURFACES [J].
AHLFORS, LV .
ANNALS OF MATHEMATICS, 1961, 74 (01) :171-&
[3]   Cubic differentials and finite volume convex projective surfaces [J].
Benoist, Yves ;
Hulin, Dominique .
GEOMETRY & TOPOLOGY, 2013, 17 (01) :595-620
[4]   Strict and nonstrict positivity of direct image bundles [J].
Berndtsson, Bo .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) :1201-1218
[5]   Curvature of vector bundles associated to holomorphic fibrations [J].
Berndtsson, Bo .
ANNALS OF MATHEMATICS, 2009, 169 (02) :531-560
[6]  
Bridgeman M., 2015, GAFA, V2, P1089
[7]   REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :41-68
[8]   COMPLETE AFFINE HYPERSURFACES .1. THE COMPLETENESS OF AFFINE METRICS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :839-866
[9]   CONVEX REAL PROJECTIVE-STRUCTURES ON CLOSED SURFACES ARE CLOSED [J].
CHOI, S ;
GOLDMAN, WM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :657-661
[10]   On convex projective manifolds and cusps [J].
Cooper, D. ;
Long, D. D. ;
Tillmann, S. .
ADVANCES IN MATHEMATICS, 2015, 277 :181-251