Triangulated categories and Kac-Moody algebras

被引:86
作者
Peng, LG [1 ]
Xiao, J
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
D O I
10.1007/s002220000062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the Ringel-Hall algebra approach, we find a Lie algebra arising in each triangulated category with T-2 = 1, where T is the translation functor, In particular, the generic form of the Lie algebras determined by the root categories, the 2-period orbit categories of the derived categories of finite dimensional hereditary associative algebras, gives a realization of all symmetrizable Kac-Moody Lie algebras.
引用
收藏
页码:563 / 603
页数:41
相关论文
共 33 条
[21]   Root categories and simple Lie algebras [J].
Peng, LG ;
Xiao, J .
JOURNAL OF ALGEBRA, 1997, 198 (01) :19-56
[22]   Some Hall polynomials for representation-finite trivial extension algebras [J].
Peng, LG .
JOURNAL OF ALGEBRA, 1997, 197 (01) :1-13
[23]   LIE-ALGEBRAS GENERATED BY INDECOMPOSABLES [J].
RIEDTMANN, C .
JOURNAL OF ALGEBRA, 1994, 170 (02) :526-546
[24]  
Ringel C.M., 1992, LONDON MATH SOC LECT, V168, P284
[25]   HALL POLYNOMIALS FOR THE REPRESENTATION-FINITE HEREDITARY ALGEBRAS [J].
RINGEL, CM .
ADVANCES IN MATHEMATICS, 1990, 84 (02) :137-178
[26]   HALL ALGEBRAS AND QUANTUM GROUPS [J].
RINGEL, CM .
INVENTIONES MATHEMATICAE, 1990, 101 (03) :583-592
[27]   REPRESENTATIONS OF K-SPECIES AND BIMODULES [J].
RINGEL, CM .
JOURNAL OF ALGEBRA, 1976, 41 (02) :269-302
[28]  
Ringel CM, 1996, J REINE ANGEW MATH, V470, P51
[29]  
Ringel CM., 1996, CANAD MATH SOC C P, V19, P185
[30]  
RINGEL CM, 1990, BANACH CTR PUBLICATI, V26, P433, DOI DOI 10.4064/-26-1-433-447