On the imaging of thin dielectric inclusions buried within a half-space

被引:43
作者
Park, Won-Kwang [1 ,2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] Kookmin Univ, Dept Math, Seoul 136702, South Korea
关键词
D O I
10.1088/0266-5611/26/7/074008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated from the application area of imaging of anti-personnel mines completely embedded in the homogeneous medium, the problem of non-iterative imaging of thin dielectric inclusions buried within a dielectric half-space is considered. For that purpose, an imaging algorithm operated at several frequencies is proposed. It is based on the asymptotic expansion formula of the scattering amplitude in the presence of the inclusions. Various numerical examples illustrate how the method behaves.
引用
收藏
页数:17
相关论文
共 18 条
  • [1] Crack reconstruction using a level-set strategy
    Alvarez, Diego
    Dorn, Oliver
    Irishina, Natalia
    Moscoso, Miguel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) : 5710 - 5721
  • [2] A music algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency
    Ammari, H
    Iakovleva, E
    Lesselier, D
    [J]. MULTISCALE MODELING & SIMULATION, 2005, 3 (03) : 597 - 628
  • [3] AMMARI H, IMAGING SCHEME UNPUB
  • [4] Ammari H., 2004, LECT NOTES MATH, V1846, DOI DOI 10.1007/B98245
  • [5] Ammari H, 2008, MATH APPL-BERLIN, V62, P1
  • [6] ASYMPTOTIC IMAGING OF PERFECTLY CONDUCTING CRACKS
    Ammari, Habib
    Kang, Hyeonbae
    Lee, Hyundae
    Park, Won-Kwang
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) : 894 - 922
  • [7] BERETTA E, 2003, CONT MATH, V333, P49, DOI DOI 10.1090/C0NM/333/05953.MR2032006
  • [8] Capdeboscq Y., 2008, ESAIM P, V22, P40
  • [9] INVERSE PROBLEMS FOR A PERTURBED DISSIPATIVE HALF-SPACE
    CHENEY, M
    ISAACSON, D
    [J]. INVERSE PROBLEMS, 1995, 11 (04) : 865 - 888
  • [10] COLTON D., 2013, Inverse Acoustic and Electromagnetic Scattering Theory, V3rd, DOI [10.1007/978-1-4614-4942-3, DOI 10.1007/978-1-4614-4942-3, DOI 10.1007/978-3-662-03537-5]