Response of crop yield and nitrogen use efficiency for wheat-maize cropping system to future climate change in northern China

被引:50
|
作者
Liang, Shuo [1 ,2 ]
Li, Yuefen [1 ]
Zhang, Xubo [2 ]
Sun, Zhigang [2 ,3 ]
Sun, Nan [4 ]
Duan, Yinghua [4 ]
Xu, Minggang [4 ]
Wu, Lianhai [5 ]
机构
[1] Jilin Univ, Coll Earth Sci, Changchun 130061, Jilin, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100190, Peoples R China
[4] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Natl Engn Lab Improving Qual Arable Land, Beijing 100081, Peoples R China
[5] Rothamsted Res, Sustainable Agr Syst, Okehampton EX20 2SB, Devon, England
基金
英国生物技术与生命科学研究理事会; 中国国家自然科学基金;
关键词
Climate change; Yield; Nitrogen use efficiency; SPACSYS model; Double cropping; ELEVATED CO2 CONCENTRATION; WINTER-WHEAT; FOOD-PRODUCTION; SOIL FERTILITY; CHANGE IMPACTS; CARBON; TEMPERATURE; SIMULATION; MANAGEMENT; WATER;
D O I
10.1016/j.agrformet.2018.07.019
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Climate change and excessive fertilization will threaten the crops yields and nitrogen utilization in coming decades. The aim of this study is to quantify the response of crop yields and nitrogen use efficiency (NUE) to different fertilization strategies and climate change scenarios in the northern China by 2100 using the process-based SPACSYS model. The model was calibrated and validated with the data from four long-term experiments with winter wheat (Triticum Aestiviurn L.) and summer maize (Zea mays L.) rotation in the northern China. Five fertilizer treatments based on the long-term experiments were chosen: non-fertilizer (CK), a combination of mineral nitrogen, phosphorus and potassium (NPK), NPK plus manure (NPKM), a high application rate of NPKM (hNPKM) and NPK plus maize straw (NPKS). The model simulations and projections were performed under four different climate change scenarios including baseline, RCP2.6, RCP4.5 and RCP8.5. Validation demonstrated that SPACSYS can adequately simulate crop yields, N uptake and annual NUE for the wheat-maize rotation. Without considering the impact of cultivar change, maize yield would increase by an average of 8.5% and wheat yield would decrease by 3.8%, and the annual NUE would decrease by an average of 15% for all fertilization treatments under RCP climate scenarios compared with the baseline. This might be the interactive effects among elevated CO2 concentration, more concentrated and intensive rainfall events, and warming temperature. For each climate scenario, manure amendment could alleviate the negative influences of future climate change on crop growth and nitrogen utilization, given that manure applied treatments had higher soil organic matter and persistent supply of nutrients, which resulted in a more stable crop yield and N removal by wheat and maize than other treatments. In addition, the highest and most stable annual NUE (38.70-52.78%), crop yields and N removal were found in hNPKM treatment until 2100. The results could provide a reference for nitrogen fertilization in study regions to improve crop yield and nitrogen use efficiency and minimize environmental risks in the future.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 50 条
  • [21] Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain
    Mu, Xinyuan
    Zhao, Yali
    Liu, Kui
    Ji, Baoyi
    Guo, Haibin
    Xue, Zhiwei
    Li, Chaohai
    EUROPEAN JOURNAL OF AGRONOMY, 2016, 78 : 32 - 43
  • [23] Much improved irrigation wheat-maize double use efficiency in an intensive cropping system in the north China plain
    Fang, Quanxiao
    Chen, Yuhai
    Yu, Qiang
    Zhu, Ouyang
    Li, Quanqi
    Yu, Shunzhang
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2007, 49 (10) : 1517 - 1526
  • [24] Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system
    Tianxiang Hao
    Qichao Zhu
    Mufan Zeng
    Jianbo Shen
    Xiaojun Shi
    Xuejun Liu
    Fusuo Zhang
    Wim de Vries
    Plant and Soil, 2019, 434 : 167 - 184
  • [25] Straw Returning and Nitrogen Application on Winter Wheat Quality and Yield under Wheat-Maize Multiple Cropping System
    Mei, Siwei
    Wang, Shu
    Yang, Xiwen
    EKOLOJI, 2019, 28 (107): : 2183 - 2192
  • [26] EFFECT OF NITROGEN MANAGEMENT ON PRODUCTIVITY, NITROGEN USE EFFICIENCY AND NITROGEN BALANCE FOR A WHEAT-MAIZE SYSTEM
    He, Ping
    Sha, Zhimin
    Yao, Dongwei
    Xing, Suli
    Zhou, Wei
    JOURNAL OF PLANT NUTRITION, 2013, 36 (08) : 1258 - 1274
  • [27] Effects of gravel mulching on yield and multilevel water use efficiency of wheat-maize cropping system in semi-arid region of Northwest China
    Wang, Donglin
    Feng, Hao
    Liu, Xiaoqing
    Li, Yi
    Zhou, Lifeng
    Zhang, Afeng
    Dyck, Miles
    FIELD CROPS RESEARCH, 2018, 218 : 201 - 212
  • [28] Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system
    Hao, Tianxiang
    Zhu, Qichao
    Zeng, Mufan
    Shen, Jianbo
    Shi, Xiaojun
    Liu, Xuejun
    Zhang, Fusuo
    de Vries, Wim
    PLANT AND SOIL, 2019, 434 (1-2) : 167 - 184
  • [29] Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system
    Cao, Qiang
    Miao, Yuxin
    Feng, Guohui
    Gao, Xiaowei
    Liu, Bin
    Liu, Yuqing
    Li, Fei
    Khosla, Raj
    Mulla, David J.
    Zhang, Fusuo
    FIELD CROPS RESEARCH, 2017, 214 : 365 - 372
  • [30] Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain
    Fang, Quanxiao
    Yu, Qiang
    Wang, Enli
    Chen, Yuhai
    Zhang, Guoliang
    Wang, Jing
    Li, Longhui
    PLANT AND SOIL, 2006, 284 (1-2) : 335 - 350