New periodic solutions for 2n-body problems in R3

被引:0
作者
Deng Chunhua
Zhang, Shiqing [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Peoples R China
[2] Huaiyin Inst Technol, Dept Comp Sci, Huaian 223000, Peoples R China
关键词
periodic solutions; 2n-body problems; variational methods;
D O I
10.1016/j.jmaa.2006.07.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For Newtonian 2n-body problems with equal masses in R-3, we prove the existence of new noncollision periodic solution such that 2n bodies move on two different closed curves. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:312 / 321
页数:10
相关论文
共 26 条
[1]  
[Anonymous], CELEST MECH
[2]   Minimization properties of Hill's orbits and applications to some N-body problems [J].
Arioli, G ;
Gazzola, F ;
Terracini, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (05) :617-650
[3]   PERIODIC-SOLUTIONS OF HAMILTONIAN-SYSTEMS OF 3-BODY TYPE [J].
BAHRI, A ;
RABINOWITZ, PH .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (06) :561-649
[4]   SYMMETRIES AND NONCOLLISION CLOSED ORBITS FOR PLANAR N-BODY-TYPE PROBLEMS [J].
BESSI, U ;
ZELATI, VC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (06) :587-598
[5]  
Buttazzo G., 1998, One-dimensional variational problems: an introduction
[6]   Variational methods on periodic and quasi-periodic solutions for the N-body problem [J].
Chen, KC .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1691-1715
[7]   Binary decompositions for planar N-body problems and symmetric periodic solutions [J].
Chen, KC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (03) :247-276
[8]   Action-minimizing orbits in the parallelogram four-body problem with equal masses [J].
Chen, KC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (04) :293-318
[9]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[10]  
Chenciner A., 2002, P INT C MATH BEIJ 20, P279