From triangulated categories to cluster algebras II

被引:159
作者
Caldero, Philippe [1 ]
Keller, Bernhard
机构
[1] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Paris 7 Denis Diderot, Inst Math, F-75251 Paris 05, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2006年 / 39卷 / 06期
关键词
D O I
10.1016/j.ansens.2006.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the acyclic case, we establish a one-to-one correspondence between the tilting objects of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator theorem, and some conjectures on properties of the mutation graph. As in the previous article, the proofs rely on the Calabi-Yau property of the cluster category. (c) 2006 Elsevier Masson SAS.
引用
收藏
页码:983 / 1009
页数:27
相关论文
共 20 条
[11]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[12]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[13]  
FOMIN S, MATHRT0311493
[14]  
GEISS C, MATHRT0503324
[15]   PIECEWISE HEREDITARY ALGEBRAS [J].
HAPPEL, D ;
RICKARD, J ;
SCHOFIELD, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :23-28
[16]  
Happel D., 1988, TRIANGULATED CATEGOR
[17]  
Hubery A, ACYCLIC CLUSTER ALGE
[18]  
Keller B, 2005, DOC MATH, V10, P551
[19]  
KELLER B, MATHRT0512471
[20]   POSITIVITY AND CANONICAL BASES IN RANK 2 CLUSTER ALGEBRAS OF FINITE AND AFFINE TYPES [J].
Sherman, Paul ;
Zelevinsky, Andrei .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (04) :947-974