Entanglement renormalization and boundary critical phenomena

被引:10
|
作者
Silvi, P. [1 ]
Giovannetti, V. [2 ,3 ]
Calabrese, P. [4 ,5 ]
Santoro, G. E. [1 ,6 ,7 ]
Fazio, R. [2 ,3 ,8 ]
机构
[1] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy
[2] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[3] CNR INFM, I-56126 Pisa, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[6] CNR INFM Democritos Natl Simulat Ctr, I-34014 Trieste, Italy
[7] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[8] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
density matrix renormalization group calculations; other numerical approaches; entanglement in extended quantum systems (theory); QUANTUM; STATES; CHAINS; SLE;
D O I
10.1088/1742-5468/2010/03/L03001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we study interacting quantum systems defined on a one-dimensional lattice with arbitrary boundary conditions, and employ the multiscale entanglement renormalization ansatz to study boundary critical phenomena. We show how to compute the average of any local operator as a function of the distance from the boundary as well as the deviation of the ground state energy due to the presence of the boundary. Furthermore, assuming a uniform tensor structure, we show that the multiscale entanglement renormalization ansatz implies an exact relation between bulk and boundary critical exponents known to exist for boundary critical systems.
引用
收藏
页数:13
相关论文
共 50 条