DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets

被引:15
作者
Lozinski, Mathew [1 ,2 ,3 ]
Bowden, Nikola A. [2 ,3 ,4 ]
Graves, Moira C. [2 ,3 ,4 ]
Fay, Michael [2 ,3 ,5 ]
Tooney, Paul A. [1 ,2 ,3 ]
机构
[1] Univ Newcastle, Fac Hlth & Med, Sch Biomed Sci & Pharm, Newcastle, NSW, Australia
[2] Univ Newcastle, Ctr Drug Repurposing & Med Res, Newcastle, NSW, Australia
[3] Hunter Med Res Inst, Newcastle, NSW, Australia
[4] Univ Newcastle, Fac Hlth & Med, Sch Med & Publ Hlth, Newcastle, NSW, Australia
[5] Genesis Canc Care, Gateshead, NSW, Australia
关键词
Glioblastoma; DNA damage response; DNA repair; Treatment resistance; PIKK inhibitor; Blood-brain barrier; MGMT PROMOTER METHYLATION; STRAND BREAK REPAIR; CENTRAL-NERVOUS-SYSTEM; RANDOMIZED PHASE-III; STEM-LIKE CELLS; MISMATCH-REPAIR; TEMOZOLOMIDE RESISTANCE; MUTATIONAL BURDEN; CANCER-CELLS; ATAXIA-TELANGIECTASIA;
D O I
10.1007/s13402-021-00613-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. Conclusions In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
引用
收藏
页码:961 / 981
页数:21
相关论文
共 192 条
[71]   Immunogenomics of Hypermutated Glioblastoma: A Patient with Germline POLE Deficiency Treated with Checkpoint Blockade Immunotherapy [J].
Johanns, Tanner M. ;
Miller, Christopher A. ;
Dorward, Ian G. ;
Tsien, Christina ;
Chang, Edward ;
Perry, Arie ;
Uppaluri, Ravindra ;
Ferguson, Cole ;
Schmidt, Robert E. ;
Dahiya, Sonika ;
Ansstas, George ;
Mardis, Elaine R. ;
Dunn, Gavin P. .
CANCER DISCOVERY, 2016, 6 (11) :1230-1236
[72]   pRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry [J].
Jones, Gemma N. ;
Rooney, Claire ;
Griffin, Nicola ;
Roudier, Martine ;
Young, Lucy A. ;
Garcia-Trinidad, Antonio ;
Hughes, Gareth D. ;
Whiteaker, Jeffrey R. ;
Wilson, Zena ;
Odedra, Rajesh ;
Zhao, Lei ;
Ivey, Richard G. ;
Howat, William J. ;
Harrington, Elizabeth A. ;
Barrett, J. Carl ;
Ramos-Montoya, Antonio ;
Lau, Alan ;
Paulovich, Amanda G. ;
Cadogan, Elaine B. ;
Pierce, Andrew J. .
BRITISH JOURNAL OF CANCER, 2018, 119 (10) :1233-1243
[73]   A topoisomerase IIβ-mediated dsDNA break required for regulated transcription [J].
Ju, BG ;
Lunyak, VV ;
Perissi, V ;
Garcia-Bassets, I ;
Rose, DW ;
Glass, CK ;
Rosenfeld, MG .
SCIENCE, 2006, 312 (5781) :1798-1802
[74]   DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas [J].
Kaina, Bernd ;
Christmann, Markus .
DNA REPAIR, 2019, 78 :128-141
[75]  
Kamiya-Matsuoka C, 2019, ANN ONCOL, V30, P144
[76]   Orally Bioavailable and Blood-Brain Barrier-Penetrating ATM Inhibitor (AZ32) Radiosensitizes Intracranial Gliomas in Mice [J].
Karlin, Jeremy ;
Allen, Jasmine ;
Ahmad, Syed F. ;
Hughes, Gareth ;
Sheridan, Victoria ;
Odedra, Rajesh ;
Farrington, Paul ;
Cadogan, Elaine B. ;
Riches, Lucy C. ;
Garcia-Trinidad, Antonio ;
Thomason, Andrew G. ;
Patel, Bhavika ;
Vincent, Jennifer ;
Lau, Alan ;
Pike, Kurt G. ;
Hunt, Thomas A. ;
Sule, Amrita ;
Valerie, Nicholas C. K. ;
Biddlestone-Thorpe, Laura ;
Kahn, Jenna ;
Beckta, Jason M. ;
Mukhopadhyay, Nitai ;
Barlaam, Bernard ;
Degorce, Sebastien L. ;
Kettle, Jason ;
Colclough, Nicola ;
Wilson, Joanne ;
Smith, Aaron ;
Barrett, Ian P. ;
Zheng, Li ;
Zhang, Tianwei ;
Wang, Yingchun ;
Chen, Kan ;
Pass, Martin ;
Durant, Stephen T. ;
Valerie, Kristoffer .
MOLECULAR CANCER THERAPEUTICS, 2018, 17 (08) :1637-1647
[77]   Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells [J].
Kim, Hee-Jun ;
Min, Ahrum ;
Im, Seock-Ah ;
Jang, Hyemin ;
Lee, Kyung Hun ;
Lau, Alan ;
Lee, Miso ;
Kim, Seongyeong ;
Yang, Yaewon ;
Kim, Jungeun ;
Kim, Tae Yong ;
Oh, Do-Youn ;
Brown, Jeffrey ;
O'Connor, Mark J. ;
Bang, Yung-Jue .
INTERNATIONAL JOURNAL OF CANCER, 2017, 140 (01) :109-119
[78]   Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models [J].
Kim, Hyoung ;
George, Erin ;
Ragland, Ryan L. ;
Rafail, Stavros ;
Zhang, Rugang ;
Krepler, Clemens ;
Morgan, Mark A. ;
Herlyn, Meenhard ;
Brown, Eric J. ;
Simpkins, Fiona .
CLINICAL CANCER RESEARCH, 2017, 23 (12) :3097-3108
[79]   Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway [J].
Kim, Hyungjin ;
D'Andrea, Alan D. .
GENES & DEVELOPMENT, 2012, 26 (13) :1393-1408
[80]   Different mismatch repair deficiencies all have the same effects on somatic hypermutation: Intact primary mechanism accompanied by secondary modifications [J].
Kim, N ;
Bozek, G ;
Lo, JC ;
Storb, U .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (01) :21-30