3D Architecture Materials Made of NiCoAl-LDH Nanoplates Coupled with NiCo-Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors

被引:181
作者
Yang, Juan [1 ]
Yu, Chang [1 ]
Fan, Xiaoming [1 ]
Qiu, Jieshan [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Liaoning Key Lab Energy Mat & Chem Engn, Carbon Res Lab, Dalian 116024, Peoples R China
关键词
HIGH-PERFORMANCE; HIGH-ENERGY; ELECTROCHEMICAL CAPACITORS; ELECTRODES; NANOSHEETS; GRAPHENE; DENSITY; POWER; CATHODE;
D O I
10.1002/aenm.201400761
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Asymmetric supercapacitors featuring both high energy and power densities as well as a long lifespan are much sought after and may become a reality depending on the availability of cheap yet highly active electrode materials. Here, a novel flexible architecture electrode made of NiCoAl-layered double hydroxide (NiCoAl-LDH) nanoplates coupled with NiCo-carbonate hydroxide (NiCo-CH) nanowires, grown on graphite paper via an in situ, one-step, hydrothermal method is reported. The nanowire-like NiCo-CH species in the nanoplate matrix function as a scaffold and support the dispersion of the NiCoAl-LDH nanoplates, resulting in a relatively loose and open structure within the electrode matrix. Asymmetric supercapacitors fabricated using the nanohybrids as the positive electrode and a typical activated carbon (AC) as negative electrode show a high energy density of 58.9 Wh kg(-1) at a power density of 0.4 kW kg(-1), which is based on the total mass of active materials at a voltage of 1.6 V. An energy density of 14.9 Wh kg(-1) can be retained even at a high power density of 51.5 kW kg(-1). Our asymmetric supercapacitor also exhibits an excellent long cycle life, whereby a specific capacitance of 97% is retained even after 10 000 cycles.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]  
Bong Gill Choi M. Y., 2010, ACS NANO, V6, P4020
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[5]   Improving the performance of cobalt-nickel hydroxidebased self-supporting electrodes for supercapacitors using accumulative approaches [J].
Cheng, Yingwen ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3314-3321
[6]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[7]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[8]   Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor [J].
Gao, Zan ;
Wang, Jun ;
Li, Zhanshuang ;
Yang, Wanlu ;
Wang, Bin ;
Hou, Mengjie ;
He, Yang ;
Liu, Qi ;
Mann, Tom ;
Yang, Piaoping ;
Zhang, Milin ;
Liu, Lianhe .
CHEMISTRY OF MATERIALS, 2011, 23 (15) :3509-3516
[9]   Flexible CoAl LDH@PEDOT Core/Shell Nanoplatelet Array for High-Performance Energy Storage [J].
Han, Jingbin ;
Dou, Yibo ;
Zhao, Jingwen ;
Wei, Min ;
Evans, David G. ;
Duan, Xue .
SMALL, 2013, 9 (01) :98-106
[10]   Nickel-Cobalt Hydroxide Nanosheets Coated on NiCo2O4 Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors [J].
Huang, Liang ;
Chen, Dongchang ;
Ding, Yong ;
Feng, Shi ;
Wang, Zhong Lin ;
Liu, Meilin .
NANO LETTERS, 2013, 13 (07) :3135-3139