A note on transitivity in set-valued discrete systems

被引:92
作者
Román-Flores, H [1 ]
机构
[1] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
D O I
10.1016/S0960-0779(02)00406-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d) be a metric space and f : X --> X is a continuous function. If we consider the space (K (X), H) of all non-empty compact subsets of X endowed with the Hausdorff metric induced by d and (f) over bar : K(X) --> K(X), (f) over bar (A) = {f(a)/a is an element of A}, then the aim of this work is to show that (f) over bar transitive implies f transitive. Also, we give an example showing that f transitive does not implies (f) over bar transitive. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 6 条
[1]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[2]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[3]  
KLEIN E, 1984, THOERY CORRESPONDENC
[4]   A note on Zadeh's extensions [J].
Román-Flores, H ;
Barros, LC ;
Bassanezi, RC .
FUZZY SETS AND SYSTEMS, 2001, 117 (03) :327-331
[5]  
Romao X, 2001, ADV EARTHQ ENGN, V9, P35
[6]   ON INTERVALS, TRANSITIVITY = CHAOS [J].
VELLEKOOP, M ;
BERGLUND, R .
AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (04) :353-355