Leavitt path algebras of weighted Cayley graphs Cn(S, w)

被引:0
作者
Mohan, R. [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Bangalore 560059, Karnataka, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2021年 / 131卷 / 02期
关键词
Leavitt path algebra; weighted Cayley graph;
D O I
10.1007/s12044-021-00610-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a postive integer n and a subset S of Z(n), let < S > = Z(n), and w : S -> N be a function. The weighted Cayley graph of the cyclic group Z(n) with respect to S and w is denoted by C-n(S, w). We give an explicit description of the Grothendieck group of the Leavitt path algebras of C-n(S, w). We also give description of Leavitt path algebras of C-n(S, w) in some special cases.
引用
收藏
页数:25
相关论文
共 14 条
[1]   The classification question for Leavitt path algebras [J].
Abrams, G. ;
Anh, P. N. ;
Louly, A. ;
Pardo, E. .
JOURNAL OF ALGEBRA, 2008, 320 (05) :1983-2026
[2]   Locally finite Leavitt path algebras [J].
Abrams, G. ;
Pino, G. Aranda ;
Molina, M. Siles .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 165 (01) :329-348
[3]   Purely infinite simple Leavitt path algebras [J].
Abrams, Gene ;
Pino, Gonzalo Aranda .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (03) :553-563
[4]   The Leavitt Path Algebras of Generalized Cayley Graphs [J].
Abrams, Gene ;
Aranda Pino, Gonzalo .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) :1-27
[5]   Leavitt Path Algebras of Cayley Graphs Arising from Cyclic Groups [J].
Abrams, Gene ;
Schoonmaker, Benjamin .
NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 :1-10
[6]   Flow invariants in the classification of Leavitt path algebras [J].
Abrams, Gene ;
Louly, Adel ;
Pardo, Enrique ;
Smith, Christopher .
JOURNAL OF ALGEBRA, 2011, 333 (01) :202-231
[7]  
[Anonymous], 2002, THEORY, V26, P69
[8]  
[Anonymous], 2018, MEDITERR J MATH, V15, P23
[9]   Nonstable K-theory for graph algebras [J].
Ara, P. ;
Moreno, M. A. ;
Pardo, E. .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :157-178
[10]  
Kra I., 2012, Notices of the AMS, V59, P368, DOI [DOI 10.1090/NOTI804, 10.1090/noti804]