Parameter Identification of SVG Using Multilayer Coarse-to-Fine Grid Searching and Particle Swarm Optimization

被引:2
|
作者
Gao, Huimin [1 ,2 ]
Diao, Ruisheng [3 ]
Huang, Zhuo [2 ]
Zhong, Yi [2 ]
Mao, Yanfang [4 ]
Tang, Wenbin [4 ]
机构
[1] Hangzhou Dianzi Univ, Informat Engn Coll, Hangzhou 311305, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Automat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, ZJU UIUC Inst, Haining 314400, Zhejiang, Peoples R China
[4] State Grid Nantong Power Supply Co, Nantong 226006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Reactive power; Parameter estimation; Voltage control; Trajectory; Power system stability; Transient analysis; Sensitivity analysis; SVG controller; parameter identification; nonlinear sensitivity; particle swarm optimization;
D O I
10.1109/ACCESS.2022.3192538
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate model parameters of Static Var Generator (SVG) play an essential role in regulating bus voltage profiles of power grid with increased penetration of renewable energy under various contingencies. Aiming at addressing the known issues of low identification accuracy and long computation time faced by the traditional SVG parameter identification methods, this paper presents a multi-layer coarse-to-fine grid searching approach for calibrating SVG dynamic model parameters using particle swarm optimization. First, actual measurement data is collected through SVG-RTDS testbeds under various conditions, which is compared with transient stability simulation results to check for model accuracy. Then, nonlinear trajectory sensitivity analysis is performed using segmented curves to identify potential bad model parameters. Next, a multi-layer coarse-to-fine grid searching mechanism is used to narrow the parameter searching space, before particle swarm algorithm optimization is used for more precise identification of parameters. By comparing the identification results obtained by the traditional identification methods and the proposed approach via comprehensive case studies, it is found that the proposed coarse-to-fine parameter identification method achieved higher accuracy and faster computational speed.
引用
收藏
页码:77137 / 77146
页数:10
相关论文
共 50 条
  • [31] Parameter Identification of Electrical and Thermal Model of a Lithium Polymer Battery using Particle Swarm Optimization
    Sanju, Tade Hrutuja
    Yang, Junxiang
    Liang, Rui
    Shang, Shuye
    Ji, Tenghao
    Jiang, Yajie
    2024 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS, PESA 2024, 2024,
  • [32] A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization
    Kwok, N. M.
    Ha, Q. P.
    Nguyen, T. H.
    Li, J.
    Samali, B.
    SENSORS AND ACTUATORS A-PHYSICAL, 2006, 132 (02) : 441 - 451
  • [33] PARAMETER OPTIMIZATION OF THE FORGING AND FORMING PROCESS USING PARTICLE SWARM OPTIMIZATION
    Li N.
    International Journal of Mechatronics and Applied Mechanics, 2022, 2022 (11): : 249 - 258
  • [34] The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization
    Salim, Reem
    Nabag, Mahmoud
    Noura, Hassan
    Fardoun, Abbas
    RENEWABLE ENERGY, 2015, 82 : 26 - 34
  • [35] Parameter Estimation of Water Quality Model Using Particle Swarm Optimization Technique
    Wang, Ke
    Wang, Xiaodong
    Shen, Li
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1209 - 1214
  • [36] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [37] Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms
    Ahandani, Morteza Alinia
    Abbasfam, Jafar
    Kharrati, Hamed
    APPLIED INTELLIGENCE, 2022, 52 (11) : 13082 - 13096
  • [38] Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms
    Morteza Alinia Ahandani
    Jafar Abbasfam
    Hamed Kharrati
    Applied Intelligence, 2022, 52 : 13082 - 13096
  • [39] Emergent system identification using particle swarm optimization
    Voss, MS
    Feng, X
    COMPLEX ADAPTIVE STRUCTURES, 2001, 4512 : 193 - 202
  • [40] Parameter identification of a Novel Controllable Excitation Feeding Platform Based on Improved Particle Swarm Optimization
    Wei, Wu
    Yi, Zhao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1708 - 1713