Parameter Identification of SVG Using Multilayer Coarse-to-Fine Grid Searching and Particle Swarm Optimization

被引:2
|
作者
Gao, Huimin [1 ,2 ]
Diao, Ruisheng [3 ]
Huang, Zhuo [2 ]
Zhong, Yi [2 ]
Mao, Yanfang [4 ]
Tang, Wenbin [4 ]
机构
[1] Hangzhou Dianzi Univ, Informat Engn Coll, Hangzhou 311305, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Automat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, ZJU UIUC Inst, Haining 314400, Zhejiang, Peoples R China
[4] State Grid Nantong Power Supply Co, Nantong 226006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Reactive power; Parameter estimation; Voltage control; Trajectory; Power system stability; Transient analysis; Sensitivity analysis; SVG controller; parameter identification; nonlinear sensitivity; particle swarm optimization;
D O I
10.1109/ACCESS.2022.3192538
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate model parameters of Static Var Generator (SVG) play an essential role in regulating bus voltage profiles of power grid with increased penetration of renewable energy under various contingencies. Aiming at addressing the known issues of low identification accuracy and long computation time faced by the traditional SVG parameter identification methods, this paper presents a multi-layer coarse-to-fine grid searching approach for calibrating SVG dynamic model parameters using particle swarm optimization. First, actual measurement data is collected through SVG-RTDS testbeds under various conditions, which is compared with transient stability simulation results to check for model accuracy. Then, nonlinear trajectory sensitivity analysis is performed using segmented curves to identify potential bad model parameters. Next, a multi-layer coarse-to-fine grid searching mechanism is used to narrow the parameter searching space, before particle swarm algorithm optimization is used for more precise identification of parameters. By comparing the identification results obtained by the traditional identification methods and the proposed approach via comprehensive case studies, it is found that the proposed coarse-to-fine parameter identification method achieved higher accuracy and faster computational speed.
引用
收藏
页码:77137 / 77146
页数:10
相关论文
共 50 条
  • [21] Particle swarm optimization with dynamic local search for frequency modulation parameter identification
    Department of Fire Engineering, The Chinese People's Armed Police Force Academy, Langfang 065000, China
    不详
    Chen, L. (chenhb_2011@yahoo.cn), 2012, Advanced Institute of Convergence Information Technology (04) : 189 - 195
  • [22] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [23] Model Parameter Identification for Lithium Batteries Using the Coevolutionary Particle Swarm Optimization Method
    Yu, Zhihao
    Xiao, Linjing
    Li, Hongyu
    Zhu, Xuli
    Huai, Ruituo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) : 5690 - 5700
  • [24] Marine Asynchronous Propulsion Motor Parameter Identification Using Dynamic Particle Swarm Optimization
    Liu, Siyuan
    Liu, Yancheng
    Wang, Chuan
    Ren, Junjie
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2211 - 2217
  • [25] System identification and control using adaptive particle swarm optimization
    Alfi, Alireza
    Modares, Hamidreza
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (03) : 1210 - 1221
  • [26] A Memory-Based Particle Swarm Optimization for Parameter Identification of Lorenz Chaotic System
    Rizk-Allah, Rizk M.
    Farag, M. A.
    Barghout, Mahmoud H.
    Hassanien, Aboul Ella
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 571 - 587
  • [27] Axial force identification of space grid structural members using particle swarm optimization method
    Ding, Beidou
    Liu, Jinling
    Huang, Zhenhua
    Li, Xian
    Wu, Xiaosuo
    Cai, Liping
    JOURNAL OF BUILDING ENGINEERING, 2020, 32
  • [28] Electrochemical machining process parameter optimization using particle swarm optimization
    Jegan, Thankaraj Mariapushpam Chenthil
    Ravindran, Durairaj
    COMPUTATIONAL INTELLIGENCE, 2017, 33 (04) : 1019 - 1037
  • [29] Parameter Identification of Chaotic Systems by a Novel Dual Particle Swarm Optimization
    Jiang, Yunxiang
    Lau, Francis C. M.
    Wang, Shiyuan
    Tse, Chi K.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02):
  • [30] Parameter Identification of Train basic resistance Based on Particle Swarm Optimization
    Li Tianxiang
    Yang Hang
    Wang Chuanru
    Wang Qingyuan
    Sun Pengfei
    Feng Xiaoyun
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1572 - 1577