Parameter Identification of SVG Using Multilayer Coarse-to-Fine Grid Searching and Particle Swarm Optimization

被引:2
|
作者
Gao, Huimin [1 ,2 ]
Diao, Ruisheng [3 ]
Huang, Zhuo [2 ]
Zhong, Yi [2 ]
Mao, Yanfang [4 ]
Tang, Wenbin [4 ]
机构
[1] Hangzhou Dianzi Univ, Informat Engn Coll, Hangzhou 311305, Zhejiang, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Automat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, ZJU UIUC Inst, Haining 314400, Zhejiang, Peoples R China
[4] State Grid Nantong Power Supply Co, Nantong 226006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Reactive power; Parameter estimation; Voltage control; Trajectory; Power system stability; Transient analysis; Sensitivity analysis; SVG controller; parameter identification; nonlinear sensitivity; particle swarm optimization;
D O I
10.1109/ACCESS.2022.3192538
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate model parameters of Static Var Generator (SVG) play an essential role in regulating bus voltage profiles of power grid with increased penetration of renewable energy under various contingencies. Aiming at addressing the known issues of low identification accuracy and long computation time faced by the traditional SVG parameter identification methods, this paper presents a multi-layer coarse-to-fine grid searching approach for calibrating SVG dynamic model parameters using particle swarm optimization. First, actual measurement data is collected through SVG-RTDS testbeds under various conditions, which is compared with transient stability simulation results to check for model accuracy. Then, nonlinear trajectory sensitivity analysis is performed using segmented curves to identify potential bad model parameters. Next, a multi-layer coarse-to-fine grid searching mechanism is used to narrow the parameter searching space, before particle swarm algorithm optimization is used for more precise identification of parameters. By comparing the identification results obtained by the traditional identification methods and the proposed approach via comprehensive case studies, it is found that the proposed coarse-to-fine parameter identification method achieved higher accuracy and faster computational speed.
引用
收藏
页码:77137 / 77146
页数:10
相关论文
共 50 条
  • [1] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491
  • [2] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [3] Parameter identification for Wiener model using particle swarm optimization with a case study
    Zhang, Yan
    Li, Shaoyuan
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1725 - +
  • [4] Parameter Identification of Hysteresis Model with Improved Particle Swarm Optimization
    Ye, Meiying
    Wang, Xiaodong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 415 - +
  • [5] Solving Parameter Identification Problem by Hybrid Particle Swarm Optimization
    Zahara, Erwie
    Liu, An
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 36 - +
  • [6] Particle Swarm Optimization Based Load Model Parameter Identification
    Kim, Young-Gon
    Song, Hwachang
    Kim, Hong Rae
    Lee, Byongjun
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [7] A Consideration of Parameter Identification of a Linear Stage Using Particle Swarm Optimization
    Watanabe, Marino
    Nakamura, Yukinori
    Wakui, Shinji
    2015 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2015, : 149 - 153
  • [8] Parameter identification of nonlinear systems using a particle swarm optimization approach
    Chang, Wei-Der
    Cheng, Jun-Ping
    Hsu, Ming-Chieh
    Tsai, Liang-Chan
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 113 - 117
  • [9] Parameter Identification of MR Damper Model Based on Particle Swarm Optimization
    Yang, Yonggang
    Ding, Youchuang
    Zhu, Shixing
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 555 - 563
  • [10] Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
    Ye, Meiyinq
    Wang, Xiaodong
    Xu, Yousheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 981 - 989