Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance

被引:61
作者
Pham, TH
Spott, T
Svaasand, LO
Tromberg, BJ
机构
[1] Univ Calif Irvine, Beckman Laser Inst & Med Clin, Laser Microbeam & Med Program, Irvine, CA 92717 USA
[2] Norwegian Univ Sci & Technol, Dept Phys Elect, N-7034 Trondheim, Norway
关键词
D O I
10.1364/AO.39.004733
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Noncontact, frequency-domain measurements of diffusely reflected light are used to quantify optical properties of two-layer tissuelike turbid media. The irradiating source is a sinusoidal intensity-modulated plane wave, with modulation frequencies ranging from 10 to 1500 MHz. Frequency-dependent phase and amplitude of diffusely reflected photon density waves are simultaneously fitted to a diffusion-based two-layer model to quantify absorption (mu(alpha) and reduced scattering (mu(s)') parameters of each layer as well as the upper-layer thickness (l). Study results indicate that the optical properties of two-layer media can be determined with a percent accuracy of the order of +/-9% and +/-5% for mu(alpha) and mu(s)', respectively. The accuracy of upper-layer thickness (l) estimation is as good as +/-6% when optical properties of upper and lower layers are known. Optical property and layer thickness prediction accuracy degrade significantly when more than three free parameters are extracted from data fits. Problems with convergence are encountered when all five free parameters (mu(alpha) and mu(s)' of upper and lower layers and thickness I) must be deduced. (C) 2000 Optical Society of America OCIS codes: 170.5270, 170.6510, 170.4580.
引用
收藏
页码:4733 / 4745
页数:13
相关论文
共 31 条
[1]  
COPE M, 1991, THESIS U COLL LONDON, P56
[2]   PHOTON MIGRATION IN A 2-LAYER TURBID MEDIUM - A DIFFUSION ANALYSIS [J].
DAYAN, I ;
HAVLIN, S ;
WEISS, GH .
JOURNAL OF MODERN OPTICS, 1992, 39 (07) :1567-1582
[3]   Imaging thermally damaged tissue by polarization sensitive optical coherence tomography [J].
de Boer, JF ;
Srinivas, SM ;
Malekafzali, A ;
Chen, ZP ;
Nelson, JS .
OPTICS EXPRESS, 1998, 3 (06) :212-218
[4]  
DeBlasi RA, 1996, ADV EXP MED BIOL, V388, P293
[5]  
Duck F., 1990, Physical Properties of Tissue, P43
[6]   MEASUREMENT OF HEMOGLOBIN FLOW AND BLOOD-FLOW BY NEAR-INFRARED SPECTROSCOPY [J].
EDWARDS, AD ;
RICHARDSON, C ;
VANDERZEE, P ;
ELWELL, C ;
WYATT, JS ;
COPE, M ;
DELPY, DT ;
REYNOLDS, EOR .
JOURNAL OF APPLIED PHYSIOLOGY, 1993, 75 (04) :1884-1889
[7]   SEMI-INFINITE-GEOMETRY BOUNDARY-PROBLEM FOR LIGHT MIGRATION IN HIGHLY SCATTERING MEDIA - A FREQUENCY-DOMAIN STUDY IN THE DIFFUSION-APPROXIMATION [J].
FANTINI, S ;
FRANCESCHINI, MA ;
GRATTON, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (10) :2128-2138
[8]   A DIFFUSION-THEORY MODEL OF SPATIALLY RESOLVED, STEADY-STATE DIFFUSE REFLECTANCE FOR THE NONINVASIVE DETERMINATION OF TISSUE OPTICAL-PROPERTIES INVIVO [J].
FARRELL, TJ ;
PATTERSON, MS ;
WILSON, B .
MEDICAL PHYSICS, 1992, 19 (04) :879-888
[9]   FREQUENCY-DOMAIN METHOD FOR MEASURING SPECTRAL PROPERTIES IN MULTIPLE-SCATTERING MEDIA - METHEMOGLOBIN ABSORPTION-SPECTRUM IN A TISSUELIKE PHANTOM [J].
FISHKIN, JB ;
SO, PTC ;
CERUSSI, AE ;
FANTINI, S ;
FRANCESCHINI, MA ;
GRATTON, E .
APPLIED OPTICS, 1995, 34 (07) :1143-1155
[10]   Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media [J].
Franceschini, MA ;
Fantini, S ;
Paunescu, LA ;
Maier, JS ;
Gratton, E .
APPLIED OPTICS, 1998, 37 (31) :7447-7458