Soil Organic Carbon (SOC) Equilibrium and Model Initialisation Methods: an Application to the Rothamsted Carbon (RothC) Model

被引:24
|
作者
Nemo [1 ]
Klumpp, K. [1 ]
Coleman, K. [3 ]
Dondini, M. [2 ]
Goulding, K. [3 ]
Hastings, A. [2 ]
Jones, Michael. B. [5 ]
Leifeld, J. [6 ]
Osborne, B. [4 ]
Saunders, M. [4 ,6 ,7 ]
Scott, T. [2 ]
Teh, Y. A. [2 ,8 ]
Smith, P. [2 ]
机构
[1] INRA Clermont Ferrand, UREP, Clermont Ferrand, France
[2] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen, Scotland
[3] Rothamsted Res, Dept Sustainable Soils & Grassland Syst, Harpenden, Herts, England
[4] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin, Ireland
[5] Trinity Coll Dublin, Dept Bot, Dublin, Ireland
[6] Agroscope Reckenholz Tanikon, Zurich, Switzerland
[7] James Hutton Inst, Dundee, Scotland
[8] Univ St Andrews, Sch Geog & Geosci, St Andrews, Fife, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
SOC; RothC; Model initialisation; Agricultural management; Ecosystem models; SOC fractionation; LONG-TERM EXPERIMENTS; CLIMATE-CHANGE; MATTER; BUDGET; N2O; POOLS; MANAGEMENT; CROPLAND; CO2; CONSEQUENCES;
D O I
10.1007/s10666-016-9536-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon (C) emissions from anthropogenic land use have accelerated climate change. To reduce C emissions, dynamic models can be used to assess the impact of human drivers on terrestrial C sequestration. Model accuracy requires correct initialisation, since incorrect initialisation can influence the results obtained. Therefore, we sought to improve the initialisation of a process-based SOC model, RothC, which can estimate the effect of climate and land-use change on SOC. The most common initialisation involves running the model until equilibrium ('spin-up run'), when the SOC pools stabilise (method 1). However, this method does not always produce realistic results. At our experimental sites, the observed SOC was not at equilibrium after 10 years, suggesting that the commonly used spin-up initialisation method assuming equilibrium might be improved. In addition to method 1, we tested two alternative initialisations for RothC that involved adjusting the total or individual SOC pool equilibrium values by regulating the C input during the entire spin-up initialisation period (method 2) and initialising each SOC pool with recently measured SOC values obtained by SOC fractionation (method 3). Analysis of the simulation accuracy for each model initialisation, quantified using the root mean square error (RMSE), indicated that a variant of method 2 that involved adjusting the equilibrium total SOC to observed values (method 2-T) generally showed less variation in the individual SOC pools and total SOC. Furthermore, as total SOC is the sum of all SOC pools, and because total SOC data are more readily available than the individual SOC pool data, we conclude that method 2-T is best for initialising RothC.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 50 条
  • [41] Long-Term Effects of Fertilization on Soil Organic Carbon Changes in Continuous Corn of Northeast China: RothC Model Simulations
    X.M. Yang
    X.P. Zhang
    H.J. Fang
    P. Zhu
    J. Ren
    L.C. Wang
    Environmental Management, 2003, 32 : 459 - 465
  • [42] Simulating soil organic carbon stock under different climate change scenarios: A RothC model application to typical land-use systems of Goa, India
    Paramesh, Venkatesh
    Kumar, Parveen
    Francaviglia, Rosa
    Mishra, Gaurav
    Arunachalam, Vadivel
    Toraskar, Sulekha
    Nath, Arun Jyoti
    CATENA, 2022, 213
  • [43] Estimating soil organic carbon changes in managed temperate moist grasslands with RothC
    Jebari, Asma
    Alvaro-Fuentes, Jorge
    Pardo, Guillermo
    Almagro, Maria
    del Prado, Agustin
    PLOS ONE, 2021, 16 (08):
  • [44] Modelling soil organic carbon storage with RothC in irrigated Vertisols under cotton cropping systems in the sub-tropics
    Senapati, Nimai
    Hulugalle, Nilantha R.
    Smith, Pete
    Wilson, Brian R.
    Yeluripati, Jagadeesh B.
    Daniel, Heiko
    Ghosh, Subhadip
    Lockwood, Peter
    SOIL & TILLAGE RESEARCH, 2014, 143 : 38 - 49
  • [45] Modeling the Organic Carbon Dynamics in 112 Years Old Permanent Manurial Experiment Plot Using the Rothamsted Carbon Model
    Sridevi, G.
    M. S., Sabeena
    Dheebakaran, Ga.
    Surendran, U.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2025, 56 (05) : 773 - 783
  • [46] Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation
    Wang, J.
    Lu, C.
    Xu, M.
    Zhu, P.
    Huang, S.
    Zhang, W.
    Peng, C.
    Chen, X.
    Wu, L.
    SOIL USE AND MANAGEMENT, 2013, 29 (02) : 182 - 190
  • [47] Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran
    Afzali, Sayed Fakhreddin
    Azad, Bijan
    Golabi, Mohammad H.
    Francaviglia, Rosa
    WATER, 2019, 11 (10)
  • [48] Litter carbon inputs to the mineral soil of Japanese Brown forest soils: comparing estimates from the RothC model with estimates from MODIS
    Hashimoto, Shoji
    Wattenbach, Martin
    Smith, Pete
    JOURNAL OF FOREST RESEARCH, 2011, 16 (01) : 16 - 25
  • [49] The impacts of CENTURY model initialization scenarios on soil organic carbon dynamics simulation in French long-term experiments
    Dimassi, Bassem
    Guenet, Bertrand
    Saby, Nicolas P. A.
    Munoz, Facundo
    Bardy, Marion
    Millet, Florent
    Martin, Manuel P.
    GEODERMA, 2018, 311 : 25 - 36
  • [50] Effect of Precipitation and Fertilization on the Changes in Soil Organic Carbon (SOC)
    L. Márton
    Cereal Research Communications, 2008, 36 : 611 - 622