Sobolev Inequality and the Exact Multiplicity of Solutions and Positive Solutions to a Second-Order Neumann Boundary Value Problem

被引:2
作者
Feng, Yuqiang [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Sci, Wuhan 430065, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Neumann boundary value problem; Sobolev inequality; Solution; Exact multiplicity; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; RESONANCE;
D O I
10.1007/s10440-009-9484-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the exact number of solutions and positive solutions for a second-order Neumann boundary value problem is considered. The exact multiplicity results for this problem are established by Sobolev inequality, comparison theorem, maximum principle and lower and upper solutions method.
引用
收藏
页码:895 / 905
页数:11
相关论文
共 12 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
Cañada A, 2005, MATH INEQUAL APPL, V8, P459
[3]   Stability and exact multiplicity of periodic solutions of duffing equations with cubic nonlinearities [J].
Chen, Hongbin ;
Li, Yi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) :3925-3932
[4]   Positive solutions for second-order superlinear repulsive singular Neumann boundary value problems [J].
Chu, Jifeng ;
Lin, Xiaoning ;
Jiang, Daqing ;
O'Regan, Donal ;
Agarwal, Ravi P. .
POSITIVITY, 2008, 12 (03) :555-569
[5]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[6]  
KHAN RA, 2007, APPL MATH SCI HIKARI, V1, P371
[7]   A quasilinear Neumann problem involving the p(x)-Laplacian [J].
Moschetto, Danila Sandra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2739-2743
[8]   Optimal bounds for bifurcation values of a superlinear periodic problem [J].
Ortega, R ;
Zhang, MR .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :119-132
[9]   Three positive solutions for second-order Neumann boundary value problems [J].
Sun, JP ;
Li, WT ;
Cheng, SS .
APPLIED MATHEMATICS LETTERS, 2004, 17 (09) :1079-1084
[10]   Multiple positive solutions to second-order Neumann boundary value problems [J].
Sun, JP ;
Li, WT .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) :187-194