Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

被引:17
作者
Nikolaev, A. G. [1 ]
Oks, E. M. [1 ,2 ]
Vizir, A. V. [1 ]
Yushkov, G. Yu. [1 ]
Frolova, V. P. [1 ]
机构
[1] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia
[2] Tomsk State Univ Control Syst & Radioelect, Tomsk 634050, Russia
基金
俄罗斯科学基金会;
关键词
Borides - Cathodes - Vacuum applications - Electric discharges - Semiconductor device manufacture - Lanthanum compounds - Boron - Ion beams - Lanthanum - Vacuum technology;
D O I
10.1063/1.4931798
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:3
相关论文
共 18 条
[1]   Cathodic arcs: Fractal voltage and cohesive energy rule [J].
Anders, A ;
Oks, EM ;
Yushkov, GY .
APPLIED PHYSICS LETTERS, 2005, 86 (21) :1-3
[2]   Plasma "anti-assistance" and "self-assistance" to high power impulse magnetron sputtering [J].
Anders, Andre ;
Yushkov, Georgy Yu. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
[3]   HIGH-CURRENT ION-SOURCE [J].
BROWN, IG ;
GAVIN, JE ;
MACGILL, RA .
APPLIED PHYSICS LETTERS, 1985, 47 (04) :358-360
[4]   Current status of plasma emission electronics: II. Hardware [J].
Bugaev, AS ;
Vizir, AV ;
Gushenets, VI ;
Nikolaev, AG ;
Oks, EM ;
Yushkov, GY ;
Burachevsky, YA ;
Burdovitsin, VA ;
Osipov, IV ;
Rempe, NG .
LASER AND PARTICLE BEAMS, 2003, 21 (02) :139-156
[5]   Observation of multiple charge states and high ion energies in high-power impulse magnetron sputtering (HiPIMS) and burst HiPIMS using a LaB6 target [J].
Franz, Robert ;
Clavero, Cesar ;
Bolat, Rustem ;
Mendelsberg, Rueben ;
Anders, Andre .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (03)
[6]   DEVELOPMENT AND EXPERIMENTS OF A MEVVA ION-SOURCE [J].
GAO, Y ;
YU, YJ ;
TANG, DL ;
HUANG, YM ;
GENG, M ;
GONG, XR .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (04) :1281-1284
[7]   Generation of a boron ion beam in a modified ion source for semiconductor applications [J].
Gushenets, V. I. ;
Bugaev, A. S. ;
Oks, E. M. ;
Yushkov, G. Yu. ;
Hershcovitch, Ady ;
Johnson, B. M. ;
Kulevoy, T. V. ;
Poole, H. J. ;
Swarovsky, A. Ya. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (03)
[8]   Ecton Mechanism of the Cathode Spot Phenomena in a Vacuum Arc [J].
Mesyats, Gennady A. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2013, 41 (04) :676-694
[9]   Upgraded vacuum arc ion source for metal ion implantation [J].
Nikolaev, A. G. ;
Oks, E. M. ;
Savkin, K. P. ;
Yushkov, G. Yu. ;
Brown, I. G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)
[10]   Angular distribution of plasma in the vacuum arc ion source [J].
Nikolaev, A. G. ;
Yushkov, G. Yu. ;
Savkin, K. P. ;
Oks, E. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)