Phase dynamics of nearly stationary patterns in activator-inhibitor systems

被引:8
作者
Hagberg, A [1 ]
Meron, E
Passot, T
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
[3] Ben Gurion Univ Negev, Dept Phys, IL-84990 Sede Boqer, Israel
[4] Observ Cote Azur, F-06034 Nice 4, France
[5] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.6471
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic stationary solutions is derived. The derivation applies to the bistable, excitable, and Turing unstable regimes. In the bistable case stability thresholds are obtained for the Eckhaus and zigzag instabilities and for the transition to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low wave numbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical findings.
引用
收藏
页码:6471 / 6476
页数:6
相关论文
共 50 条
[41]   SINGULAR LIMIT OF AN ACTIVATOR-INHIBITOR TYPE MODEL [J].
Henry, Marie .
NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) :781-803
[42]   Activator-inhibitor system with delay and pattern formation [J].
Piotrowska, MJ .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (1-2) :123-131
[44]   Global existence of solutions of an activator-inhibitor system [J].
Jiang, HQ .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 14 (04) :737-751
[45]   Bifurcation and chaos in a discrete activator-inhibitor system [J].
Khan, Abdul Qadeer ;
Saleem, Zarqa ;
Ibrahim, Tarek Fawzi ;
Osman, Khalid ;
Alshehri, Fatima Mushyih ;
Abd El-Moneam, Mohamed .
AIMS MATHEMATICS, 2023, 8 (02) :4551-4574
[46]   PROPERTIES OF A TISSUE PLASMINOGEN ACTIVATOR-INHIBITOR COMPLEX [J].
LEVIN, EG .
CIRCULATION, 1984, 70 (04) :366-366
[47]   Evaluating Activator-Inhibitor Mechanisms for Sensors Coordination [J].
Neglia, Giovanni ;
Reina, Giuseppe .
2007 2ND BIO-INSPIRED MODELS OF NETWORKS, INFORMATION AND COMPUTING SYSTEMS (BIONETICS), 2007, :123-+
[48]   Synchronization in coupled cells with activator-inhibitor pathways [J].
Rajesh, S. ;
Sinha, Sudeshna ;
Sinha, Somdata .
PHYSICAL REVIEW E, 2007, 75 (01)
[49]   FIBRINOLYTIC ACTIVATOR-INHIBITOR IN LIVER-DISEASE [J].
PUTNAM, CW ;
BUCKLEY, AR .
GASTROENTEROLOGY, 1981, 80 (05) :1345-1345
[50]   Hopf bifurcation in an activator-inhibitor system with network [J].
Shi, Yanling ;
Liu, Zuhan ;
Tian, Canrong .
APPLIED MATHEMATICS LETTERS, 2019, 98 :22-28