Phase dynamics of nearly stationary patterns in activator-inhibitor systems

被引:8
作者
Hagberg, A [1 ]
Meron, E
Passot, T
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
[3] Ben Gurion Univ Negev, Dept Phys, IL-84990 Sede Boqer, Israel
[4] Observ Cote Azur, F-06034 Nice 4, France
[5] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.6471
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic stationary solutions is derived. The derivation applies to the bistable, excitable, and Turing unstable regimes. In the bistable case stability thresholds are obtained for the Eckhaus and zigzag instabilities and for the transition to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low wave numbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical findings.
引用
收藏
页码:6471 / 6476
页数:6
相关论文
共 50 条
[31]   A PRIORI ESTIMATES FOR STATIONARY SOLUTIONS OF AN ACTIVATOR-INHIBITOR MODEL DUE TO GIERER AND MEINHARDT [J].
TAKAGI, I .
TOHOKU MATHEMATICAL JOURNAL, 1982, 34 (01) :113-132
[32]   No Oscillations in Real Activator-Inhibitor Systems in Accomplishing Pattern Formation [J].
Meinhardt, Hans .
BULLETIN OF MATHEMATICAL BIOLOGY, 2012, 74 (10) :2265-2267
[33]   Stability of least energy patterns of the shadow system for an activator-inhibitor model [J].
Wei-Ming Ni ;
Izumi Takagi ;
Eiji Yanagida .
Japan Journal of Industrial and Applied Mathematics, 2001, 18 :259-272
[34]   Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model [J].
Wu, Ranchao ;
Zhou, Yue ;
Shao, Yan ;
Chen, Liping .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 :597-610
[35]   SENSITIVITY TO INITIAL CONDITIONS IN AN EXTENDED ACTIVATOR-INHIBITOR MODEL FOR THE FORMATION OF PATTERNS [J].
Piasecki, R. ;
Olchawa, W. ;
Smaga, K. .
ACTA PHYSICA POLONICA B, 2018, 49 (05) :961-979
[36]   LONGTIME BEHAVIOR FOR THE ACTIVATOR-INHIBITOR MODEL [J].
WU JianhuaDepartment of Mathematics Shaanxi Normal University Xian ChinaHUANG AixiangDepartment of Mathimatics Xian Jiaotong University Xian China .
Systems Science and Mathematical Sciences, 2000, (03) :285-291
[37]   Exploring the spatio-temporal dynamics in activator-inhibitor systems through a dual approach of analysis and computation [J].
Chiteri, Vincent Nandwa ;
Juma, Victor Ogesa ;
Okwoyo, James Mariita ;
Moindi, Stephen Kibet ;
Mapfumo, Kudzanayi Zebedia ;
Madzvamuse, Anotida .
MATHEMATICAL BIOSCIENCES, 2025, 385
[39]   FINITE-TIME BLOWUP OF SOLUTIONS TO SOME ACTIVATOR-INHIBITOR SYSTEMS [J].
Karch, Grzegorz ;
Suzuki, Kanako ;
Zienkiewicz, Jacek .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) :4997-5010
[40]   THE LIMIT OF EFFECTIVENESS OF THE ACTIVATOR-INHIBITOR MODEL IN HYDRA [J].
SHIMIZU, H ;
ANDO, H ;
SAWADA, Y .
DEVELOPMENT GROWTH & DIFFERENTIATION, 1983, 25 (04) :437-437