Phase dynamics of nearly stationary patterns in activator-inhibitor systems

被引:8
作者
Hagberg, A [1 ]
Meron, E
Passot, T
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
[3] Ben Gurion Univ Negev, Dept Phys, IL-84990 Sede Boqer, Israel
[4] Observ Cote Azur, F-06034 Nice 4, France
[5] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.6471
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic stationary solutions is derived. The derivation applies to the bistable, excitable, and Turing unstable regimes. In the bistable case stability thresholds are obtained for the Eckhaus and zigzag instabilities and for the transition to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low wave numbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical findings.
引用
收藏
页码:6471 / 6476
页数:6
相关论文
共 50 条
[21]   Segregation and pursuit waves in activator-inhibitor systems [J].
Méndez, Vicenc ;
Horsthemke, Werner ;
Zemskov, Evgeny P. ;
Casas-Vázquez, Jose .
PHYSICAL REVIEW E, 2007, 76 (04)
[22]   Existence of solution for a class of activator-inhibitor systems [J].
Figueiredo, Giovany ;
Montenegro, Marcelo .
GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (01) :98-113
[23]   Propagation of fronts in activator-inhibitor systems with a cutoff [J].
Zemskov, EP ;
Méndez, V .
EUROPEAN PHYSICAL JOURNAL B, 2005, 48 (01) :81-86
[24]   Turing pattern dynamics in an activator-inhibitor system with superdiffusion [J].
Zhang, Lai ;
Tian, Canrong .
PHYSICAL REVIEW E, 2014, 90 (06)
[25]   Nonequilibrium potential approach: Local and global stability of stationary patterns in an activator-inhibitor system with fast inhibition [J].
Drazer, G ;
Wio, HS .
PHYSICA A, 1997, 240 (3-4) :571-585
[26]   Global feedback control of Turing patterns in network-organized activator-inhibitor systems [J].
Hata, S. ;
Nakao, H. ;
Mikhailov, A. S. .
EPL, 2012, 98 (06)
[27]   Turing pattern formation in fractional activator-inhibitor systems [J].
Henry, BI ;
Langlands, TAM ;
Wearne, SL .
PHYSICAL REVIEW E, 2005, 72 (02)
[28]   A stability index for travelling waves in activator-inhibitor systems [J].
Cornwell, Paul ;
Jones, Christopher K. R. T. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) :517-548
[29]   Synchronization dynamics of chemically coupled cells with activator-inhibitor pathways [J].
Ghomsi, P. Guemkam ;
Kakmeni, F. M. Moukam ;
Kofane, T. C. ;
Tchawoua, C. .
PHYSICS LETTERS A, 2014, 378 (38-39) :2813-2823
[30]   Stability of least energy patterns of the shadow system for an activator-inhibitor model [J].
Ni, WM ;
Takagi, I ;
Yanagida, E .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2001, 18 (02) :259-272