Phase dynamics of nearly stationary patterns in activator-inhibitor systems

被引:8
|
作者
Hagberg, A [1 ]
Meron, E
Passot, T
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, IL-84990 Sede Boqer, Israel
[3] Ben Gurion Univ Negev, Dept Phys, IL-84990 Sede Boqer, Israel
[4] Observ Cote Azur, F-06034 Nice 4, France
[5] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.6471
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic stationary solutions is derived. The derivation applies to the bistable, excitable, and Turing unstable regimes. In the bistable case stability thresholds are obtained for the Eckhaus and zigzag instabilities and for the transition to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low wave numbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical findings.
引用
收藏
页码:6471 / 6476
页数:6
相关论文
共 50 条
  • [1] Phase dynamics of nearly stationary patterns in activator-inhibitor systems
    Hagberg, Aric
    Meron, Ehud
    Passot, Thierry
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (06): : 6471 - 6476
  • [2] Stable Patterns Generated by Activator-Inhibitor Systems
    Jager, Edgar
    Mathematical Medicine and Biology, 1986, 3 (03) : 179 - 190
  • [3] Regular patterns in dichotomically driven activator-inhibitor dynamics
    Sailer, X.
    Hennig, D.
    Beato, V.
    Engel, H.
    Schimansky-Geier, L.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [4] Complex nonlinear dynamics in subdiffusive activator-inhibitor systems
    Datsko, B.
    Gafiychuk, V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1673 - 1680
  • [5] COHERENCE RESONANCE IN EXCITABLE SYSTEMS: ACTIVATOR-INHIBITOR DYNAMICS
    Stan, Cristina
    Cristescu, Constantin P.
    Alexandroaei, Dumitru
    REVUE ROUMAINE DE CHIMIE, 2008, 53 (09) : 869 - +
  • [6] Dynamics and patterns of an activator-inhibitor model with cubic polynomial source
    Yanqiu Li
    Juncheng Jiang
    Applications of Mathematics, 2019, 64 : 61 - 73
  • [7] DYNAMICS AND PATTERNS OF AN ACTIVATOR-INHIBITOR MODEL WITH CUBIC POLYNOMIAL SOURCE
    Li, Yanqiu
    Jiang, Juncheng
    APPLICATIONS OF MATHEMATICS, 2019, 64 (01) : 61 - 73
  • [8] Turing patterns in network-organized activator-inhibitor systems
    Nakao, Hiroya
    Mikhailov, Alexander S.
    NATURE PHYSICS, 2010, 6 (07) : 544 - 550
  • [9] The dynamics of a kinetic activator-inhibitor system
    Ni, Wei-Ming
    Suzuki, Kanako
    Takagi, Izumi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (02) : 426 - 465
  • [10] Degenerate Turing Bifurcation and the Birth of Localized Patterns in Activator-Inhibitor Systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 1673 - 1709