ON THE KAZHDAN-LUSZTIG CELLS IN TYPE E8

被引:2
|
作者
Geck, Meinolf [1 ]
Halls, Abbie [1 ]
机构
[1] Univ Stuttgart, IAZ Lehrstuhl Algebra, Fachbereich Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
HECKE ALGEBRAS; WEYL GROUP; PRIMITIVE SPECTRUM; COXETER GROUPS; REPRESENTATIONS; INVOLUTIONS; CONJECTURE;
D O I
10.1090/mcom/2963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1979, Kazhdan and Lusztig introduced the notion of "cells" (left, right and two-sided) for a Coxeter group W, a concept with numerous applications in Lie theory and around. Here, we address algorithmic aspects of this theory for finite W which are important in applications, e.g., run explicitly through all left cells, determine the values of Lusztig's a-function, identify the characters of left cell representations. The aim is to show how type E-8 (the largest group of exceptional type) can be handled systematically and efficiently, too. This allows us, for the first time, to solve some open questions in this case, including Kottwitz' conjecture on left cells and involutions.
引用
收藏
页码:3029 / 3049
页数:21
相关论文
共 50 条
  • [1] On Kazhdan-Lusztig cells in type B
    Bonnafe, Cedric
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (01) : 53 - 82
  • [2] On the Kazhdan-Lusztig order on cells and families
    Geck, Meinolf
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 905 - 927
  • [3] On Kazhdan-Lusztig cells in type B
    Cédric Bonnafé
    Journal of Algebraic Combinatorics, 2010, 31 : 53 - 82
  • [4] On Domino Insertion and Kazhdan-Lusztig Cells in Type Bn
    Bonnafe, Cedric
    Geck, Meinolf
    Iancu, Lacrimioara
    Lam, Thomas
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 33 - +
  • [5] GENERALIZED INDUCTION OF KAZHDAN-LUSZTIG CELLS
    Guilhot, Jeremie
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (04) : 1385 - 1412
  • [6] Monodromy in Kazhdan-Lusztig cells in affine type A
    Chmutov, Michael
    Lewis, Joel Brewster
    Pylyavskyy, Pavlo
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1891 - 1949
  • [7] RSK BASES AND KAZHDAN-LUSZTIG CELLS
    Raghavan, K. N.
    Samuel, Preena
    Subrahmanyam, K. V.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (02) : 525 - 569
  • [8] Minimal reduction type and the Kazhdan-Lusztig map
    Yun, Zhiwei
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1240 - 1274
  • [9] CONJUGACY CLASSES OF INVOLUTIONS AND KAZHDAN-LUSZTIG CELLS
    Bonnafe, Cedric
    Geck, Meinolf
    REPRESENTATION THEORY, 2014, 18 : 155 - 182
  • [10] Kazhdan-Lusztig Cells in Affine Weyl Groups of Rank 2
    Guilhot, Jeremie
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (17) : 3422 - 3462