Carbon nanotube sponges as tunable materials for electromagnetic applications

被引:8
作者
Shuba, M., V [1 ,2 ]
Yuko, D., I [1 ]
Kuzhir, P. P. [1 ,2 ]
Maksimenko, S. A. [1 ,2 ]
De Crescenzi, M. [3 ]
Scarselli, M. [3 ]
机构
[1] Belarusian State Univ, Inst Nucl Problems, Bobruiskaya 11, Minsk 220050, BELARUS
[2] Tomsk State Univ, Lenin Ave 36, Tomsk 634050, Russia
[3] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
基金
欧盟地平线“2020”;
关键词
carbon nanotubes; 3D network; microwave absorption; conductivity; ELECTRICAL-PROPERTIES; COMPOSITES; CONDUCTIVITY; THIN;
D O I
10.1088/1361-6528/aacf3c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microwave conductivity and permittivity of both single-walled and multi-walled carbon nanotube (SWCNT and MWCNT) sponges were measured while compressing the samples. Compression leads to a huge variation of the absorptance, reflectance, and transmittance of the samples. The dependence of the microwave conductivity on the sponge density follows a power-law relation with exponents 1.7 +/- 0.1 and 2.0 +/- 0.2 for MWCNT and SWCNT sponges, respectively. These exponents can be decreased slightly by the addition of a non-conducting component which partly electrically separates adjacent tubes within the samples. The conductivity of MWCNT sponge was measured in the terahertz range while heating in air from 300 to 513 K and it increased due to an increase of a number of conducting channels in MWCNTs.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications [J].
Caro-Briones, Ruben ;
Perez-Castillo, Marco Antonio ;
Martinez-Gutierrez, Hugo ;
Munoz-Sandoval, Emilio ;
Martinez-Mejia, Gabriela ;
Ruiz-Virgen, Lazaro ;
Corea, Monica .
NANOMATERIALS, 2025, 15 (14)
[42]   Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene [J].
Hu, Haiqing ;
Zhao, Li ;
Liu, Jiaqiang ;
Liu, Yin ;
Cheng, Junmei ;
Luo, Jun ;
Liang, Yongri ;
Tao, Yong ;
Wang, Xin ;
Zhao, Jian .
POLYMER, 2012, 53 (15) :3378-3385
[43]   Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: Preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness [J].
Lin, Jia-Horng ;
Lin, Zheng-Ian ;
Pan, Yi-Jun ;
Hsieh, Chien-Teng ;
Huang, Chien-Lin ;
Lou, Ching-Wen .
JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (21)
[44]   Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering [J].
Feng, Dong ;
Xu, Dawei ;
Wang, Qingqing ;
Liu, Pengju .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (26) :7938-7946
[45]   Carbon Nanotube Nanostructured Hybrid Materials Systems for Renewable Energy Applications [J].
Marquis, Fernand D. S. .
JOM, 2011, 63 (01) :48-53
[46]   A Review of Carbon Nanotube Ensembles as Flexible Electronics and Advanced Packaging Materials [J].
Kumar, Satish ;
Cola, Baratunde A. ;
Jackson, Roderick ;
Graham, Samuel .
JOURNAL OF ELECTRONIC PACKAGING, 2011, 133 (02) :20906-1
[47]   Design and Evaluation of Carbon Nanotube Based Optical Power Limiting Materials [J].
Rahman, Salma ;
Mirza, Shamim ;
Sarkar, Abhijit ;
Rayfield, George W. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (08) :4805-4823
[48]   Carbon nanotube/graphene composites as thermal interface materials for electronic devices [J].
Wang, Xiaogang ;
Zhao, Liuying ;
Liu, Jun .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2019, 27 (12) :907-913
[49]   Carbon Nanotube-Polyurethane Composite Sheets for Flexible Thermoelectric Materials [J].
Paleo, Antonio J. ;
Martinez-Rubi, Yadienka ;
Krause, Beate ;
Potschke, Petra ;
Jakubinek, Michael B. ;
Ashrafi, Behnam ;
Kingston, Christopher .
ACS APPLIED NANO MATERIALS, 2023, 6 (19) :17986-17995
[50]   Materials for electromagnetic interference shielding [J].
Chung, D. D. L. .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 255