Carbon nanotube sponges as tunable materials for electromagnetic applications

被引:8
作者
Shuba, M., V [1 ,2 ]
Yuko, D., I [1 ]
Kuzhir, P. P. [1 ,2 ]
Maksimenko, S. A. [1 ,2 ]
De Crescenzi, M. [3 ]
Scarselli, M. [3 ]
机构
[1] Belarusian State Univ, Inst Nucl Problems, Bobruiskaya 11, Minsk 220050, BELARUS
[2] Tomsk State Univ, Lenin Ave 36, Tomsk 634050, Russia
[3] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
基金
欧盟地平线“2020”;
关键词
carbon nanotubes; 3D network; microwave absorption; conductivity; ELECTRICAL-PROPERTIES; COMPOSITES; CONDUCTIVITY; THIN;
D O I
10.1088/1361-6528/aacf3c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microwave conductivity and permittivity of both single-walled and multi-walled carbon nanotube (SWCNT and MWCNT) sponges were measured while compressing the samples. Compression leads to a huge variation of the absorptance, reflectance, and transmittance of the samples. The dependence of the microwave conductivity on the sponge density follows a power-law relation with exponents 1.7 +/- 0.1 and 2.0 +/- 0.2 for MWCNT and SWCNT sponges, respectively. These exponents can be decreased slightly by the addition of a non-conducting component which partly electrically separates adjacent tubes within the samples. The conductivity of MWCNT sponge was measured in the terahertz range while heating in air from 300 to 513 K and it increased due to an increase of a number of conducting channels in MWCNTs.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Sensitivity-Tunable Strain Sensors Based on Carbon Nanotube@Carbon Nanocoil Hybrid Networks [J].
Yang, Shuaitao ;
Li, Chengwei ;
Cong, Tianze ;
Zhao, Yongpeng ;
Xu, Shihong ;
Wang, Peng ;
Pan, Lujun .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (41) :38160-38168
[32]   Tunable electromagnetic response of free-standing 3D carbon nanotube network in the Ka-band [J].
Shuba, M. V. ;
Yuko, D. ;
Kuzhir, P. P. ;
Maksimenko, S. A. ;
Scarselli, M. .
2017 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM - ITALY (ACES), 2017,
[33]   Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range [J].
Gonzalez, M. ;
Crespo, M. ;
Baselga, J. ;
Pozuelo, J. .
NANOSCALE, 2016, 8 (20) :10724-10730
[34]   Effectiveness of Polystyrene/Carbon Nanotube Composite in Electromagnetic Interference Shielding Materials: A Review [J].
Kausar, Ayesha ;
Ahmad, Saadia ;
Salman, Syed M. .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2017, 56 (10) :1027-1042
[35]   Carbon Nanotube Assembly and Integration for Applications [J].
Venkataraman, Anusha ;
Amadi, Eberechukwu Victoria ;
Chen, Yingduo ;
Papadopoulos, Chris .
NANOSCALE RESEARCH LETTERS, 2019, 14 (1)
[36]   Carbon nanotube and Graphene for Photonic Applications [J].
Yamashita, Shinji ;
Martinez, Amos ;
Xu, Bo .
ACTIVE PHOTONIC MATERIALS V, 2013, 8808
[37]   Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating [J].
Zhao, Wenqi ;
Li, Yibin ;
Wang, Shanshan ;
He, Xiaodong ;
Shang, Yuanyuan ;
Peng, Qingyu ;
Wang, Chao ;
Du, Shanyi ;
Gui, Xuchun ;
Yang, Yanbing ;
Yuan, Quan ;
Shi, Enzheng ;
Wu, Shiting ;
Xu, Wenjing ;
Cao, Anyuan .
CARBON, 2014, 76 :19-26
[38]   Influence of Carbon Nanotube-Pretreatment on the Properties of Polydimethylsiloxane/Carbon Nanotube-Nanocomposites [J].
Diekmann, Astrid ;
Omelan, Marvin C. V. ;
Giese, Ulrich .
POLYMERS, 2021, 13 (09)
[39]   Performance of barium titanate@carbon nanotube nanocomposite as an electromagnetic wave absorber [J].
Melvin, Gan Jet Hong ;
Ni, Qing-Qing ;
Wang, Zhipeng .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (02)
[40]   The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding [J].
Zou, Lihua ;
Lan, Chuntao ;
Yang, Li ;
Xu, Zhenzhen ;
Chu, Changliu ;
Liu, Yingcun ;
Qiu, Yiping .
DIAMOND AND RELATED MATERIALS, 2020, 104