Carbon nanotube sponges as tunable materials for electromagnetic applications

被引:8
作者
Shuba, M., V [1 ,2 ]
Yuko, D., I [1 ]
Kuzhir, P. P. [1 ,2 ]
Maksimenko, S. A. [1 ,2 ]
De Crescenzi, M. [3 ]
Scarselli, M. [3 ]
机构
[1] Belarusian State Univ, Inst Nucl Problems, Bobruiskaya 11, Minsk 220050, BELARUS
[2] Tomsk State Univ, Lenin Ave 36, Tomsk 634050, Russia
[3] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
基金
欧盟地平线“2020”;
关键词
carbon nanotubes; 3D network; microwave absorption; conductivity; ELECTRICAL-PROPERTIES; COMPOSITES; CONDUCTIVITY; THIN;
D O I
10.1088/1361-6528/aacf3c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microwave conductivity and permittivity of both single-walled and multi-walled carbon nanotube (SWCNT and MWCNT) sponges were measured while compressing the samples. Compression leads to a huge variation of the absorptance, reflectance, and transmittance of the samples. The dependence of the microwave conductivity on the sponge density follows a power-law relation with exponents 1.7 +/- 0.1 and 2.0 +/- 0.2 for MWCNT and SWCNT sponges, respectively. These exponents can be decreased slightly by the addition of a non-conducting component which partly electrically separates adjacent tubes within the samples. The conductivity of MWCNT sponge was measured in the terahertz range while heating in air from 300 to 513 K and it increased due to an increase of a number of conducting channels in MWCNTs.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Characterization of Single- and Multiwalled Carbon Nanotube Composites for Electromagnetic Shielding and Tunable Applications [J].
Liu, Lie ;
Kong, Ling Bing ;
Yin, Wen-Yan ;
Matitsine, S. .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2011, 53 (04) :943-949
[2]   Electromagnetic characteristics of carbon nanotube film materials [J].
Zhang Wei ;
Xiong Huagang ;
Wang Shaokai ;
Li Min ;
Gu Yizhuo .
CHINESE JOURNAL OF AERONAUTICS, 2015, 28 (04) :1245-1254
[3]   High Ampacity Carbon Nanotube Materials [J].
Mokry, Guillermo ;
Pozuelo, Javier ;
Vilatela, Juan J. ;
Sanz, Javier ;
Baselga, Juan .
NANOMATERIALS, 2019, 9 (03)
[4]   Solvent-Tunable Microstructures of Aligned Carbon Nanotube Films [J].
Yu, Xueping ;
Zhang, Xiaohua ;
Zou, Jingyun ;
Lan, Zhuyao ;
Jiang, Chunyang ;
Zhao, Jingna ;
Zhang, Dengsong ;
Miao, Menghe ;
Li, Qingwen .
ADVANCED MATERIALS INTERFACES, 2016, 3 (17)
[5]   Carbon-nanotube-based ultralight materials for ultrabroadband electromagnetic wave shielding and absorption [J].
Yanagi, Reo ;
Segi, Takahiro ;
Ito, Akira ;
Ueno, Tomonaga ;
Hidaka, Kishio .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (08)
[6]   Carbon Nanotube/Polysiloxane Foams with Tunable Absorption Bands for Electromagnetic Wave Shielding [J].
Guo, Chen ;
Itoh, Keisuke ;
Sun, Dianming ;
Kondo, Yasuo ;
Fuji, Masayoshi .
ACS APPLIED NANO MATERIALS, 2020, 3 (06) :5944-5954
[7]   Macroporous carbon nanotube arrays with tunable pore sizes and their template applications [J].
Peng, Huisheng ;
Sun, Xuemei .
CHEMICAL COMMUNICATIONS, 2009, (09) :1058-1060
[8]   Polymer/carbon nanotube nanocomposites as temperature sensing materials [J].
Al Sawafi, Suaad ;
Song, Mo .
POLYMERS & POLYMER COMPOSITES, 2023, 31
[9]   Electromagnetic interference shielding of carbon nanotube macrofilms [J].
Wu, Zi Ping ;
Li, Ming Mao ;
Hu, Ying Yan ;
Li, Ye Sheng ;
Wang, Zhi Xiang ;
Yin, Yan Hong ;
Chen, Yi Sheng ;
Zhou, Xiao .
SCRIPTA MATERIALIA, 2011, 64 (09) :809-812
[10]   Electromagnetic resonance analysis of asymmetric carbon nanotube dimers for sensing applications [J].
Dey, Sumitra ;
Garboczi, Edward J. ;
Hassan, Ahmed M. .
NANOTECHNOLOGY, 2020, 31 (42)