Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community

被引:43
作者
Bei, Shuikuan [1 ]
Li, Xia [1 ,2 ]
Kuyper, Thomas W. [3 ]
Chadwick, David R. [4 ]
Zhang, Junling [1 ]
机构
[1] China Agr Univ, Natl Acad Agr Green Dev, Coll Resources & Environm Sci, Minist Educ,Key Lab Plant Soil Interact, Beijing 100193, Peoples R China
[2] Shanxi Datong Univ, Sch Life Sci, Datong 037009, Peoples R China
[3] Wageningen Univ & Res, Dept Soil Qual, POB 47, NL-6700 AA Wageningen, Netherlands
[4] Bangor Univ, Environm Ctr Wales, Sch Nat Sci, Bangor LL57 2UW, Gwynedd, Wales
基金
中国国家自然科学基金;
关键词
Straw incorporation; Mineral N; Soil management legacy; Extracellular enzyme activity; Priming effect; Fungi: bacteria ratios; BIOMASS; MECHANISMS; RESIDUE; SEQUESTRATION; DECOMPOSITION; EXTRACTION; DEPOSITION; STORAGE; QUALITY; INPUT;
D O I
10.1016/j.scitotenv.2021.152882
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Straw incorporation into soil increases carbon (C) sequestration but can induce priming effects (PE), the enhanced breakdown of soil organic matter. The direction and magnitude of PE and the consequences for the C balance induced by straw addition depend on nitrogen (N) availability and soil management history. Using C-13-labeled maize straw, we conducted a 56-day incubation to determine the dynamics of PE and the underlying microbial mechanisms after straw and/or mineral N addition to three soils with contrasting cultivation and fertilization histories, i) unfertilized soil (Unfertilized), ii) 8 years farmyard manure amended soil (Manured), and iii) abandoned cropland soil (Abandoned). C-13-PLFAs (phospholipid fatty acids) were analyzed to identify microbial groups utilizing straw and to explore their contribution to the PE. Straw addition increased microbial biomass (MBC), activities of enzymes related to the C and N cycles, and changed microbial community composition. SOC decomposition was enhanced by microbes activated by straw addition, leading to a positive cumulative PE ranging from 494 to 789 mu g C g(-1) soil. The magnitude of positive PE and straw decomposition in the manured soil was higher than that in the unfertilized and abandoned soils due to larger MBC and higher enzyme activities, resulting in a lower net SOC gain. Compared with straw only, the combination of straw addition with N fertilizer did not influence MBC, but increased positive PE (average increase of 18.1%) and straw decomposition (17.1%), further limiting SOC gain. C-13-labeled fungi: bacteria ratios and Gram-positive (G+): negative (G-) bacteria ratios increased with the increasing PE after N fertilization, but soil-derived (un-labeled) PLFAs remained stable. Random forest analysis further showed that straw C-assimilating microbial attributes are important predictors in driving the greater PE after N addition. Our study highlights the importance of straw C-assimilating fungi and G+ bacteria in mediating N-induced PE in arable soils.
引用
收藏
页数:11
相关论文
共 74 条
[1]   Responses of extracellular enzymes to simple and complex nutrient inputs [J].
Allison, SD ;
Vitousek, PM .
SOIL BIOLOGY & BIOCHEMISTRY, 2005, 37 (05) :937-944
[2]   High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities [J].
Bell, Colin W. ;
Fricks, Barbara E. ;
Rocca, Jennifer D. ;
Steinweg, Jessica M. ;
McMahon, Shawna K. ;
Wallenstein, Matthew D. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (81) :e50961
[3]   THE EFFECT OF THE ADDITION OF ORGANIC MATERIALS ON THE DECOMPOSITION OF AN ORGANIC SOIL [J].
BINGEMAN, CW ;
VARNER, JE ;
MARTIN, WP .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1953, 17 (01) :34-38
[4]   Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review [J].
Blagodatskaya, E. ;
Kuzyakov, Y. .
BIOLOGY AND FERTILITY OF SOILS, 2008, 45 (02) :115-131
[5]   Microbial interactions affect sources of priming induced by cellulose [J].
Blagodatskaya, Evgenia ;
Khomyakov, Nikita ;
Myachina, Olga ;
Bogomolova, Irina ;
Blagodatsky, Sergey ;
Kuzyakov, Yakov .
SOIL BIOLOGY & BIOCHEMISTRY, 2014, 74 :39-49
[6]   Model of apparent and real priming effects: Linking microbial activity with soil organic matter decomposition [J].
Blagodatsky, Sergey ;
Blagodatskaya, Evgenia ;
Yuyukina, Tatyana ;
Kuzyakov, Yakov .
SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (08) :1275-1283
[7]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[8]   EMPIRICAL-MODELS FOR THE SPATIAL-DISTRIBUTION OF WILDLIFE [J].
BUCKLAND, ST ;
ELSTON, DA .
JOURNAL OF APPLIED ECOLOGY, 1993, 30 (03) :478-495
[9]   Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions [J].
Byrnes, Jarrett E. K. ;
Gamfeldt, Lars ;
Isbell, Forest ;
Lefcheck, Jonathan S. ;
Griffin, John N. ;
Hector, Andy ;
Cardinale, Bradley J. ;
Hooper, David U. ;
Dee, Laura E. ;
Duffy, J. Emmett .
METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (02) :111-124
[10]   Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories [J].
Chen, Ruirui ;
Senbayram, Mehmet ;
Blagodatsky, Sergey ;
Myachina, Olga ;
Dittert, Klaus ;
Lin, Xiangui ;
Blagodatskaya, Evgenia ;
Kuzyakov, Yakov .
GLOBAL CHANGE BIOLOGY, 2014, 20 (07) :2356-2367