Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

被引:100
作者
Chan, V. S. [1 ]
Costley, A. E. [2 ]
Wan, B. N. [3 ]
Garofalo, A. M. [1 ]
Leuer, J. A. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Tokamak Energy Ltd, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China
关键词
fusion energy; Fusion Nuclear Science Facility; system codes; steady-state; neutron fluence; PHYSICS BASIS; POWER-PLANT;
D O I
10.1088/0029-5515/55/2/023017
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher B-T and I-p can result in a high gain Q(fus) similar to 12, P-fus similar to 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) > 1 as a target.
引用
收藏
页数:9
相关论文
共 23 条
  • [1] Abdou MA, 1996, FUSION TECHNOL, V29, P1
  • [2] Scaling of bootstrap current on equilibrium and plasma profile parameters in tokamak plasmas
    Andrade, M. C. R.
    Ludwig, G. O.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (06)
  • [3] The ITER design
    Aymar, R
    Barabaschi, P
    Shimomura, Y
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (05) : 519 - 565
  • [4] A fusion development facility on the critical path to fusion energy
    Chan, V. S.
    Stambaugh, R. D.
    Garofalo, A. M.
    Canik, J.
    Kinsey, J. E.
    Park, J. M.
    Peng, M. Y. K.
    Petrie, T. W.
    Porkolab, M.
    Prater, R.
    Sawan, M.
    Smith, J. P.
    Snyder, P. B.
    Stangeby, P. C.
    Wong, C. P. C.
    [J]. NUCLEAR FUSION, 2011, 51 (08)
  • [5] PHYSICS BASIS OF A FUSION DEVELOPMENT FACILITY UTILIZING THE TOKAMAK APPROACH
    Chan, V. S.
    Stambaugh, R. D.
    Garofalo, A. M.
    Chu, M. S.
    Fisher, R. K.
    Greenfield, C. M.
    Humphreys, D. A.
    Lao, L. L.
    Leuer, J. A.
    Petrie, T. W.
    Prater, R.
    Staebler, G. M.
    Snyder, P. B.
    St John, H. E.
    Turnbull, A. D.
    Wong, C. P. C.
    Van Zeeland, M. A.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (01) : 66 - 93
  • [6] Costley A. E., 2015, NUCL FUSION IN PRESS
  • [7] A Fusion Nuclear Science Facility for a fast-track path to DEMO
    Garofalo, A. M.
    Abdou, M. A.
    Canik, J. M.
    Chan, V. S.
    Hyatt, A. W.
    Hill, D. N.
    Morley, N. B.
    Navratil, G. A.
    Sawan, M. E.
    Taylor, T. S.
    Wong, C. P. C.
    Wu, W.
    Ying, A.
    [J]. FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) : 876 - 881
  • [8] Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials
    Gilbert, M. R.
    Dudarev, S. L.
    Nguyen-Manh, D.
    Zheng, S.
    Packer, L. W.
    Sublet, J. -Ch.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) : S755 - S760
  • [9] Gong X., 2014, 25 IAEA FUS EN C ST
  • [10] Physics basis for the advanced tokamak fusion power plant, ARIES-AT
    Jardin, SC
    Kessel, CE
    Mau, TK
    Miller, RL
    Najmabadi, F
    Chan, VS
    Chu, MS
    LaHaye, R
    Lao, LL
    Petrie, TW
    Politzer, P
    St John, HE
    Snyder, P
    Staebler, GM
    Turnbull, AD
    West, WP
    [J]. FUSION ENGINEERING AND DESIGN, 2006, 80 (1-4) : 25 - 62