Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction

被引:27
作者
Martinez-Fernandez, Marcos [1 ]
Martinez-Perinan, Emiliano [2 ]
Royuela, Sergio [3 ]
Martinez, Jose, I [4 ]
Zamora, F. [3 ,5 ,6 ,7 ]
Lorenzo, Encarnacion [2 ,5 ,6 ]
Segura, Jose L. [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Quim, Dept Quim Organ 1, Madrid 28040, Spain
[2] Univ Autonoma Madrid, Fac Ciencias, Dept Quim Analit & Anal Instrumental, Madrid 28049, Spain
[3] Univ Autonoma Madrid, Fac Ciencias, Dept Quim Inorgan, Madrid 28049, Spain
[4] Inst Ciencia Mat Madrid ICMM CSIC, Dept Nanoestructuras Superficies Recubrimientos &, Madrid 28049, Spain
[5] Inst Madrileno Estudios Avanzados Nanociencia IMD, Madrid 28049, Spain
[6] Univ Autonoma Madrid, Inst Adv Res Chem Sci IAdChem, Madrid 28049, Spain
[7] Univ Autonoma Madrid, Condensed MatterPhys Ctr IFIMAC, Madrid 28049, Spain
关键词
COF; Covalent organic frameworks; Napthalenediimide; Electrocatalysis; Oxygen reduction reaction; Metal-free; Pyrolysis-free; PERYLENE BISIMIDE DYES; HYDROGEN EVOLUTION; BASIS-SETS; CARBON; POLYMERS; CRYSTALLINE; NANOPARTICLES; GENERATION; TRANSPORT; EXCHANGE;
D O I
10.1016/j.apmt.2022.101384
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing organic electrocatalysts toward the oxygen reduction reaction (ORR) that avoid heteroatom doping processes and high-temperature carbonization is of great significance for the maturing of fuel cell applications. Herein, a series of two-dimensional imide-based covalent organic framework (COFs) electrocatalysts toward the ORR is reported. The hydrodynamic electrochemical study reveals that 3.5 electrons are exchanged during the ORR indicating that the process catalyzed by these COFs has a clear preference for the 4-electron reduction pathway. The COFs contain conjugated electroactive napthalenediimide (NDI) moieties that provides the active sites for the electrocatalysis and promotes the formation of COFs with face-to-face pi-pi stacked structures to provide intrinsic porosity and large surface areas. These COFs can be essentially considered as an organized pattern of active sites embedded in the pore walls of the COF. The choice of suitable comonomers with variable distortions from planarity offers the possibility of obtaining these electroactive COFs with similar redox ability but different degrees of porosity and interlaminar spacing. This work evidences a new insight into developing novel families of electrocatalysts from COFs. Structure and stacking fashion of the COF-systems are investigated on the basis of DFT calculations, as well as the photoabsorption spectra of the representative molecular entities and a proof-of-concept rationalization of the intermediate steps of the ORR mechanism. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 96 条
[81]   GW in the Gaussian and Plane Waves Scheme with Application to Linear Acenes [J].
Wilhelm, Jan ;
Del Ben, Mauro ;
Hutter, Jurg .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) :3623-3635
[82]   Toward Two-Dimensional π-Conjugated Covalent Organic Radical Frameworks [J].
Wu, Shaofei ;
Li, Minchan ;
Phan, Hoa ;
Wang, Dingguan ;
Herng, Tun Seng ;
Ding, Jun ;
Lu, Zhouguang ;
Wu, Jishan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (27) :8007-8011
[83]   Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electrocatalysis [J].
Wu, Zhen-Yu ;
Xu, Xing-Xing ;
Hu, Bi-Cheng ;
Liang, Hai-Wei ;
Lin, Yue ;
Chen, Li-Feng ;
Yu, Shu-Hong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (28) :8179-8183
[84]   Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures [J].
Würthner, F .
CHEMICAL COMMUNICATIONS, 2004, (14) :1564-1579
[85]  
Würthner F, 2000, CHEM-EUR J, V6, P3871, DOI 10.1002/1521-3765(20001103)6:21<3871::AID-CHEM3871>3.3.CO
[86]  
2-W
[87]   Nitrogen-Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction [J].
Xiang, Zhonghua ;
Cao, Dapeng ;
Huang, Ling ;
Shui, Jianglan ;
Wang, Min ;
Dai, Liming .
ADVANCED MATERIALS, 2014, 26 (20) :3315-+
[88]   Template Conversion of Covalent Organic Frameworks into 2D Conducting Nanocarbons for Catalyzing Oxygen Reduction Reaction [J].
Xu, Qing ;
Tang, Yanping ;
Zhang, Xiaobin ;
Oshima, Yoshifumi ;
Chen, Qiuhong ;
Jiang, Donglin .
ADVANCED MATERIALS, 2018, 30 (15)
[89]   Transformation from H- to J-aggregated perylene bisimide dyes by complexation with cyanurates [J].
Yagai, Shiki ;
Seki, Tomohiro ;
Karatsu, Takashi ;
Kitamura, Akihide ;
Wuerthner, Frank .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (18) :3367-3371
[90]   Defects on carbons for electrocatalytic oxygen reduction [J].
Yan, Xuecheng ;
Jia, Yi ;
Yao, Xiangdong .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (20) :7628-7658