A Symmetric Van 't Hoff Equation and Equilibrium Temperature Gradients

被引:11
作者
Sheehan, D. P. [1 ]
机构
[1] Univ San Diego, Dept Phys, 5998 Alcala Pk, San Diego, CA 92110 USA
关键词
non-equilibrium thermodynamics; Van 't Hoff equation; epicatalysis; catalysis; second law of thermodynamics; STATE PRESSURE-GRADIENTS; CHEMICAL-VAPOR-DEPOSITION; ATOMIC-HYDROGEN; 2ND LAW; DISSOCIATION; FILAMENTS; PARADOX; DIAMOND;
D O I
10.1515/jnet-2017-0007
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermodynamically isolated systems normally relax to equilibria characterized by single temperatures; however, in recent years several systems have been identified that challenge this presumption, demonstrating stationary temperature gradients at equilibrium. These temperature gradients, most pronounced in systems involving epicatalysis, can be explained via an underappreciated symmetry in the Van 't Hoff equation.
引用
收藏
页码:301 / 315
页数:15
相关论文
共 44 条
  • [1] Ajayan P, 2016, PHYS TODAY, V69, P39
  • [2] [Anonymous], 2008, SEARCH PUBMED
  • [3] [Anonymous], POGG ANN
  • [4] [Anonymous], 1993, Extended Irreversible Thermodynamics
  • [5] Atkins P.W., 1993, ELEMENTS PHYS CHEM, V3rd
  • [6] Balescu R., 1975, Equilibrium and Non-Equilibrium Statistical Mechanics
  • [7] de Groot S.R., 1984, NONEQUILIBRIUM THERM
  • [8] SAHA-LANGMUIR EQUATION AND ITS APPLICATION
    DRESSER, MJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1968, 39 (01) : 338 - &
  • [9] Comment on "Dynamically maintained steady-state pressure gradients"
    Duncan, TL
    [J]. PHYSICAL REVIEW E, 2000, 61 (04): : 4661 - 4661
  • [10] Currents in nonequilibrium statistical mechanics
    Gaveau, B.
    Schulman, L. S.
    [J]. PHYSICAL REVIEW E, 2009, 79 (02):