A biodegradable p-n junction sonosensitizer for tumor microenvironment regulating sonodynamic tumor therapy

被引:21
作者
Hu, Jinyan [1 ]
Geng, Bijiang [1 ]
Glowacki, Julie [2 ]
Zhang, Shirui [1 ]
Yang, Xue [1 ]
Pan, Dengyu [1 ]
Shen, Longxiang [3 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Orthoped Surg, Boston, MA 02115 USA
[3] Shanghai Jiao Tong Univ, Dept Orthoped Surg, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
biodegradability; p-n junctions; sonosensitizers; tumor microenvironment regulation; sonodynamic therapy; ENHANCED CHEMODYNAMIC THERAPY; CANCER-THERAPY; LIFEPO4;
D O I
10.1016/j.cej.2022.137320
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is important yet challenging to develop a class of biocompatible semiconductor heterojunction sonosensitizers with enhanced charge carrier separation dynamics and tumor microenvironment (TME) regulating capability. Considering its p-type conductivity, Fe2+/Fe3+-based TME regulating capability, and biodegradability of an olivine iron phosphate, we presented a new sonosensitizer design by p-n junction engineering of partially oxidized LiFePO4 nanorods and renal-clearable n-type N-doped CDs (N-CDs) to achieve the effective spatial separation of the US-generated electron-hole pairs for enhanced sonodynamic therapy (SDT) of tumors. The constructed N-CD@LiFePO4 p-n junction sonosensitizer was found to exhibit high-efficiency 1O2 generation, Fe2+ catalyzed center dot OH production, and Fe3+-oxidized consumption of overexpressed GSH. The Fe2+ catalyzed H2O2 decomposition efficiency of N-CD@LiFePO4 was much higher than previously reported Fe3O4 nano-enzymes owing to the presence of (PO4)3- polyanions. Moreover, LiFePO4 was slowly degraded into non-toxic species of Li+, Fe3+, and PO43- while ultrasmall N-CDs were released from the composite for renal elimination, enabling the nanosonosensitizer to be harmlessly cleared out of the body after completion of SDT-based tumor eradication by single drug injection and single ultrasound (US) irradiation. The rationally designed p-n junction sonosensitizers could promote their SDT translation because of component biocompatibility, p-n junction configuration, and Fe2+/Fe3+ mediated TME regulation.
引用
收藏
页数:13
相关论文
empty
未找到相关数据